skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On Building Modular and Elastic Data Structures with Bulk Operations
This paper introduces MEDS, a modular and elastic framework that simplifies the development of high-performance concurrent data structures that support linearizable primitive (i.e., add, remove, contains) and bulk (e.g., range query) operations.  more » « less
Award ID(s):
1757787 1814974
PAR ID:
10232380
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
International Conference on Distributed Computing and Networking 2021 (ICDCN '21)
Page Range / eLocation ID:
237 - 238
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract PremiseUnderstanding relationships among grass traits, fire, and herbivores may help improve conservation strategies for savannas that are threatened by novel disturbance regimes. Emerging theory, developed in Africa, emphasizes that functional traits of savanna grasses reflect the distinct ways that fire and grazers consume biomass. Specifically, functional trade‐offs related to flammability and palatability predict that highly flammable grass species will be unpalatable, while highly palatable species will impede fire. MethodsWe quantified six culm and leaf traits of 337 native grasses of Texas—a historical savanna region that has been transformed by fire exclusion, megafaunal extinctions, and domestic livestock. ResultsMultivariate analyses of traits revealed three functional strategies. “Grazer grasses” (N = 50) had culms that were short, narrow, and horizontal, and leaves with high width to length (W:L) and low C to N ratios (C:N)—trait values that attract grazers and avoid fire. “Fire grasses” (N = 104) had culms that were tall, thick, and upright, and leaves that were thick, with low W:L, and high C:N—trait values that promote fire and discourage grazers. “Generalist tolerators” and “generalist avoiders” (N = 183) had trait values that were intermediate to the other groups. ConclusionsOur findings confirm that the flammability–palatability trade‐offs that operate in Africa also explain correlated suites of traits in Texas grasses and highlights that the grass flora of Texas bears the signature of Pleistocene megafauna and the influence of fires that predate human arrival. We suggest that grass functional classifications based on fire and grazer traits can improve prescribed fire and livestock management of savannas of Texas and globally. 
    more » « less
  2. null (Ed.)
    We consider two aspects of the human enterprise that profoundly affect the global environment: population and consumption. We show that fertility and consumption behavior harbor a class of externalities that have not been much noted in the literature. Both are driven in part by attitudes and preferences that are not egoistic but socially embedded; that is, each household’s decisions are influenced by the decisions made by others. In a famous paper, Garrett Hardin [G. Hardin, Science 162, 1243–1248 (1968)] drew attention to overpopulation and concluded that the solution lay in people “abandoning the freedom to breed.” That human attitudes and practices are socially embedded suggests that it is possible for people to reduce their fertility rates and consumption demands without experiencing a loss in wellbeing. We focus on fertility in sub-Saharan Africa and consumption in the rich world and argue that bottom-up social mechanisms rather than top-down government interventions are better placed to bring about those ecologically desirable changes. 
    more » « less
  3. Nature is full of exemplary species that have evolved personalized sensors and actuating systems that interface with and adapt to the world around them. Among them, cephalopods are unique. They employ fast-sensing systems that trigger structural changes to impart color changes through biochemical and optoelectronic controls. These changes occur using specialized optical organs that receive and respond to signals (light, temperature, fragrances, sound, and textures) in their environments. We describe features that enable these functions, highlight engineered systems that mimic them, and discuss strategies to consider for future cephalopod-inspired sensor technologies. 
    more » « less
  4. null (Ed.)
    Teachers, schools, districts, states, and technology developers endeavor to personalize learning experiences for students, but definitions of personalized learning (PL) vary and designs often span multiple components. Variability in definition and implementation complicate the study of PL and the ways that designs can leverage student characteristics to reliably achieve targeted learning outcomes. We document the diversity of definitions of PL that guide implementation in educational settings and review relevant educational theories that could inform design and implementation. We then report on a systematic review of empirical studies of personalized learning using PRISMA guidelines. We identified 376 unique studies that investigated one or more PL design features and appraised this corpus to determine (1) who studies personalized learning; (2) with whom, and in what contexts; and (3) with focus on what learner characteristics, instructional design approaches, and learning outcomes. Results suggest that PL research is led by researchers in education, computer science, engineering, and other disciplines, and that the focus of their PL designs differs by the learner characteristics and targeted outcomes they prioritize. We further observed that research tends to proceed without a priori theoretical conceptualization, but also that designs often implicitly align to assumptions posed by extant theories of learning. We propose that a theoretically guided approach to the design and study of PL can organize efforts to evaluate the practice, and forming an explicit theory of change can improve the likelihood that efforts to personalize learning achieve their aims. We propose a theory-guided method for the design of PL and recommend research methods that can parse the effects obtained by individual design features within the “many-to-many-to-many” designs that characterize PL in practice. 
    more » « less
  5. Abstract Neurons in the lateral hypothalamic area that express hypocretin (Hcrt) neuropeptides help regulate many behaviors including wakefulness and reward seeking. These neurons project throughout the brain, including to neural populations that regulate wakefulness, such as the locus coeruleus (LC) and tuberomammilary nucleus (TMN), as well as to populations that regulate reward, such as the nucleus accumbens (NAc) and ventral tegmental area (VTA). To address the roles of Hcrt neurons in seemingly disparate behaviors, it has been proposed that Hcrt neurons can be anatomically subdivided into at least two distinct subpopulations: a “medial group” that projects to the LC and TMN, and a “lateral group” that projects to the NAc and VTA. Here, we use a dual retrograde tracer strategy to test the hypotheses that Hcrt neurons can be classified based on their downstream projections and medial/lateral location within the hypothalamus. We found that individual Hcrt neurons were significantly more likely to project to both the LC and TMN or to both the VTA and NAc than would be predicted by chance. In contrast, we found that Hcrt neurons that projected to the LC or TMN were mostly distinct from Hcrt neurons that projected to the VTA or NAc. Interestingly, these two populations of Hcrt neurons are intermingled within the hypothalamus and cannot be classified into medial or lateral groups. These results suggest that Hcrt neurons can be distinguished based on their downstream projections but are intermingled within the hypothalamus. 
    more » « less