skip to main content


Title: An Exploratory Interface for Dataset Repositories Using Cell-Centric Indexing
Large collections of datasets are being published on the Web at an increasing rate. This poses a problem to researchers and data journalists who must sift through these large quantities of data to find datasets that meet their needs. Our solution to this problem is cell-centric indexing, a novel approach which considers the individual cell of a dataset to be the fundamental unit of search, indexing the corresponding metadata to each individual cell. This facilitates a new style of user interface that allows users to explore the collection via histograms that show the distributions of various terms organized by how they are used in the dataset.  more » « less
Award ID(s):
1757787 1816325
PAR ID:
10232383
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Big Data (IEEE BigData 2020)
Page Range / eLocation ID:
5716 - 5718
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ncreasingly, large collections of datasets are made available to the public via the Web, ranging from government-curated datasets like those of data.gov to communally-sourced datasets such as Wikipedia tables. It has become clear that traditional search techniques are insufficient for such sources, especially when the user is unfamiliar with the terminology used by the creators of the relevant datasets. We propose to address this problem by elevating the datum to a first-class object that is indexed, thereby making it less dependent on how a dataset is structured. In a data table, a cell contains a value for a particular row as described by a particular column. In our cell-centric indexing approach, we index the metadata of each cell, so that information about its dataset and column simply become metadata rather than constraining concepts. In this paper we define cell-centric indexing and present a system architecture that supports its use in exploring datasets. We describe how cell-centric indexing can be implemented using traditional information retrieval technology and evaluate the scalability of the architecture. 
    more » « less
  2. Alonso, Omar ; Marchesin, Stefano ; Najork, Mark ; Silvello, Gianmaria (Ed.)
    We present a novel approach to dataset search and exploration. Cell-centric indexing is a unique indexing strategy that enables a powerful, new interface. The strategy treats individual cells of a table as the indexed unit, and combining this with a number of structure-specific fields enables queries that cannot be answered by a traditional indexing approach. Our interface provides users with an overview of a dataset repository, and allows them to efficiently use various facets to explore the collection and identify datasets that match their interests. 
    more » « less
  3. When analyzing scRNA-seq data with clustering algorithms, annotating the clusters with cell types is an essential step toward biological interpretation of the data. Annotations can be performed manually using known cell type marker genes. Annotations can also be automated using knowledge-driven or data-driven machine learning algorithms. Majority of cell type annotation algorithms are designed to predict cell types for individual cells in a new dataset. Since biological interpretation of scRNA-seq data is often made on cell clusters rather than individual cells, several algorithms have been developed to annotate cell clusters. In this study, we compared five cell type annotation algorithms, Azimuth, SingleR, Garnett, scCATCH, and SCSA, which cover the spectrum of knowledge-driven and data-driven approaches to annotate either individual cells or cell clusters. We applied these five algorithms to two scRNA-seq datasets of peripheral blood mononuclear cells (PBMC) samples from COVID-19 patients and healthy controls, and evaluated their annotation performance. From this comparison, we observed that methods for annotating individual cells outperformed methods for annotation cell clusters. We applied the cell-based annotation algorithm Azimuth to the two scRNA-seq datasets to examine the immune response during COVID-19 infection. Both datasets presented significant depletion of plasmacytoid dendritic cells (pDCs), where differential expression in this cell type and pathway analysis revealed strong activation of type I interferon signaling pathway in response to the infection. 
    more » « less
  4. In this work, we formulate and solve a new type of approximate nearest neighbor search (ANNS) problems called ANNS after linear transformation (ALT). In ANNS-ALT, we search for the vector (in a dataset) that, after being linearly transformed by a user-specified query matrix, is closest to a query vector. It is a very general mother problem in the sense that a wide range of baby ANNS problems that have important applications in databases and machine learning can be reduced to and solved as ANNS-ALT, or its dual that we call ANNS-ALTD. We propose a novel and computationally efficient solution, called ONe Index for All Kernels (ONIAK), to ANNS-ALT and all its baby problems when the data dimension d is not too large (say d ≤ 200). In ONIAK, a universal index is built, once and for all, for answering all future ANNS-ALT queries that can have distinct query matrices. We show by experiments that, when d is not too large, ONIAK has better query performance than linear scan on the mother problem (of ANNS-ALT), and has query performances comparable to those of the state-of-the-art solutions on the baby problems. However, the algorithmic technique behind this universal index approach suffers from a so-called dimension blowup problem that can make the indexing time prohibitively long for a large dataset. We propose a novel algorithmic technique, called fast GOE quadratic form (FGoeQF), that completely solves the (prohibitively long indexing time) fallout of the dimension blowup problem. We also propose a Johnson-Lindenstrauss transform (JLT) based ANNS-ALT (and ANNS-ALTD) solution that significantly outperforms any competitor when d is large. 
    more » « less
  5. In this work, we formulate and solve a new type of approximate nearest neighbor search (ANNS) problems called ANNS after linear transformation (ALT). In ANNS-ALT, we search for the vector (in a dataset) that, after being linearly transformed by a user-specified query matrix, is closest to a query vector. It is a very general mother problem in the sense that a wide range of baby ANNS problems that have important applications in databases and machine learning can be reduced to and solved as ANNS-ALT, or its dual that we call ANNS-ALTD. We propose a novel and computationally efficient solution, called ONe Index for All Kernels (ONIAK), to ANNS-ALT and all its baby problems when the data dimension 𝑑 is not too large (say 𝑑 ≤ 200). In ONIAK, a universal index is built, once and for all, for answering all future ANNS-ALT queries that can have distinct query matrices. We show by experiments that, when 𝑑 is not too large, ONIAK has better query performance than linear scan on the mother problem (of ANNS-ALT), and has query performances comparable to those of the state-of-the-art solutions on the baby problems. However, the algorithmic technique behind this universal index approach suffers from a so-called dimension blowup problem that can make the indexing time prohibitively long for a large dataset. We propose a novel algorithmic technique, called fast GOE quadratic form (FGoeQF), that completely solves the (prohibitively long indexing time) fallout of the dimension blowup problem. We also propose a Johnson-Lindenstrauss transform (JLT) based ANNS- ALT (and ANNS-ALTD) solution that significantly outperforms any competitor when 𝑑 is large. 
    more » « less