skip to main content


Title: Climatological Westward‐Propagating Semidiurnal Tides and Their Composite Response to Sudden Stratospheric Warmings in SuperDARN and SD‐WACCM‐X
Abstract

Using the Super Dual Auroral Radar Network observations (clustered around 60°N) and NCAR CESM2.0 extended Whole Atmosphere Community Climate Model nudged with reanalyzes, we examine the climatology of semidiurnal tides in meridional wind associated with the migrating component (SW2) and non‐migrating components of wavenumbers 1 (SW1) and 3 (SW3). We then illustrate their composite response to major sudden stratospheric warmings (SSWs). Peaking in late summer and winter, the climatological SW2 amplitude exceeds SW1 and SW3 except around late Fall and Spring. The winter climatological peak is absent in the model perhaps due to the zonal wind bias at the observed altitudes. The observed SW2 amplitude declines after SSW onset before enhancing ∼10 days later, along with SW1 and SW3. Within the observed region, the simulated SW2 only amplifies after SSW onset, with minimal SW1 and SW3 responses. The model reveals a stronger SW2 response above the observed location, with diminished amplitude before and enhancement after SSW globally. This enhancement appears related to increased equatorial ozone heating and background wind symmetry. The strongest SW1 and SW3 growth occurs in the Southern Hemisphere before SSW. SW2 and quasi‐stationary planetary wave activities are temporally collocated during SSW suggesting that their interactions excite SW1 and SW3. After SSW, the model also reveals (1) semidiurnal‐tide‐like perturbations generated possibly by the interactions between SW2 and westward‐traveling disturbances and (2) the enhancement of migrating semidiurnal lunar tide in the Northern Hemisphere that exceeds non‐migrating tidal and semidiurnal‐tide‐like responses. The simulated eastward‐propagating semidiurnal tides are briefly examined.

 
more » « less
Award ID(s):
1642232
NSF-PAR ID:
10453852
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Atmospheres
Volume:
126
Issue:
3
ISSN:
2169-897X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Mesospheric winds from three longitudinal sectors at 65°N and 54°N latitude are combined to diagnose the zonal wave numbers (m) of spectral wave signatures during the Southern Hemisphere sudden stratospheric warming (SSW) 2019. Diagnosed are quasi‐10‐ and 6‐day planetary waves (Q10DW and Q6DW,m = 1), solar semidiurnal tides withm = 1, 2, 3 (SW1, SW2, and SW3), lunar semidiurnal tide, and the upper and lower sidebands (USB and LSB,m = 1 and 3) of Q10DW‐SW2 nonlinear interactions. We further present 7‐year composite analyses to distinguish SSW effects from climatological features. Before (after) the SSW onset, LSB (USB) enhances, accompanied by the enhancing (fading) Q10DW, and a weakening of climatological SW2 maximum. These behaviors are explained in terms of Manley‐Rowe relation, that is, the energy goes first from SW2 to Q10DW and LSB, and then from SW2 and Q10DW to USB. Our results illustrate that the interactions can explain most wind variabilities associated with the SSW.

     
    more » « less
  2. Abstract

    Using meteor wind data from the Super Dual Auroral Radar Network (SuperDARN) in the Northern Hemisphere, we (1) demonstrate that the migrating (Sun‐synchronous) tides can be separated from the nonmigrating components in the mesosphere and lower thermosphere (MLT) region and (2) use this to determine the response of the different components of the semidiurnal tide (SDT) to sudden stratospheric warming (SSW) conditions. The radars span a limited range of latitudes around 60°N and are located over nearly 180° of longitude. The migrating tide is extracted from the nonmigrating components observed in the meridional wind recorded from meteor ablation drift velocities around 95‐km altitude, and a 20‐year climatology of the different components is presented. The well‐documented late summer and wintertime maxima in the semidiurnal winds are shown to be due primarily to the migrating SDT, whereas during late autumn and spring the nonmigrating components are at least as strong as the migrating SDT. The robust behavior of the SDT components during SSWs is then examined by compositing 13 SSW events associated with an elevated stratopause recorded between 1995 and 2013. The migrating SDT is seen to reduce in amplitude immediately after SSW onset and then return anomalously strongly around 10–17 days after the SSW onset. We conclude that changes in the underlying wind direction play a role in modulating the tidal amplitude during the evolution of SSWs and that the enhancement in the midlatitude migrating SDT (previously reported in modeling studies) is observed in the MLT at least up to 60°N.

     
    more » « less
  3. Abstract

    The nature of the variability of the Total Electron Content (TEC) over Europe is investigated during 2009 and 2019 Northern Hemisphere (NH) SSW events in this study by using a combination of Global Navigation Satellite System (GNSS) based TEC observations and Thermosphere‐Ionosphere Electrodynamics General Circulation Model (TIE‐GCM) simulations. To simulate the SSW effects in TIE‐GCM, the dynamical fields from the Whole Atmosphere Community Climate Model with thermosphere and ionosphere extension (WACCM‐X) simulations of 2009 and 2019 SSWs are specified at the TIE‐GCM lower boundary. The observed and simulated TEC are in overall good agreement and therefore the simulations are used to understand the sources of mid‐latitude TEC variability during both SSWs. Through comparison of TIE‐GCM simulations with and without geomagnetic forcing, we find that the TEC variability during the 2019 SSW event, was predominantly geomagnetically forced, while for the 2009 SSW, the major variability in TEC was accounted for by the changes in vertically propagating migrating semidiurnal solar (SW2) and lunar (M2) tides. By comparing the TIE‐GCM simulations with and without the SW2 and M2 tides, we find that these semidiurnal tides contribute to20%–25% increase in the quiet background TEC.

     
    more » « less
  4. Abstract

    In this study, Global Ionosphere Specification (GIS) based on Gauss‐Markov Kalman filter assimilation of slant total electron content observed from ground‐based global positioning system receivers and space‐based radio occultation instrumentations is applied to investigate the ionospheric day‐to‐day tidal variability during the 2009 stratospheric sudden warming (SSW) period. Including the improved daily three‐dimensional global electron density distribution from GIS enables us to retrieve the daily solar tidal solution by using least squares tidal analysis. We find prominent reductions followed by enhancements in the amplitude of the solar semidiurnal migrating tide (SW2) after the peak warming, with recurrent phase variations occurring at low magnetic latitudes over a period of about 15 days. This is close to the beating period (15.13 day) between SW2 and lunar semidiurnal (M2), thus suggesting the existence of strong M2, and our results demonstrate that the intensification of M2 exists only during the SSW period. Additionally, M2 acts as the key contributor to make the semidiurnal ionospheric perturbations shift toward later local times. Our tidal analyses of daily GIS thus provide evidence for the combined impact of amplitudes and phases of the SW2 and M2 in producing semidiurnal variations in ionosphere during the 2009 SSW.

     
    more » « less
  5. Abstract

    The Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (WACCM‐X) is used to investigate the influence of stratosphere polar vortex variability on the mesosphere, thermosphere, and ionosphere during Northern Hemisphere winter. Based on 40 simulated Northern Hemisphere winters, the mesosphere and lower thermosphere (MLT) residual circulation is found to depend on whether the stratosphere polar vortex is strong or weak. In particular, during weak stratosphere polar vortex time periods, the MLT circulation anomalies are characterized by clockwise and anti‐clockwise flow in the Northern and Southern Hemispheres, respectively. Opposite, though weaker, anomalies are found to occur during time periods when the stratosphere polar vortex is strong. The MLT circulation anomalies influence the composition of the lower thermosphere, leading to ±5% changes in the thermosphere column integrated atomic oxygen to molecular nitrogen ratio (ΣO/N2). Large differences between strong and weak stratosphere polar vortex events are also found to occur in the semidiurnal migrating tide (SW2) in the MLT, which leads to ±15%–20% differences in the SW2 component of the ionosphere total electron content (TEC) at low latitudes. The WACCM‐X simulation results indicate that variability in the stratosphere polar vortex can explain ∼30% and ∼18% of the quiet time variability in thermosphere ΣO/N2and the SW2 component of TEC during Northern Hemisphere winter, respectively.

     
    more » « less