skip to main content


Title: Seeing around corners with edge-resolved transient imaging
Abstract

Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in autonomous navigation, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations—a plan view plus heights—and a 180field of view for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension despite a small scan aperture (1.5-centimeter radius) and only 45 measurement locations.

 
more » « less
Award ID(s):
1815896 1955219
NSF-PAR ID:
10360572
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electronic eye cameras are receiving increasing interest due to their unique advantages such as wide field of view, low aberrations, and simple imaging optics compared to conventional planar focal plane arrays. However, the spectral sensing ranges of most electronic eyes are confined to the visible, which is limited by the energy gaps of the sensing materials and by fabrication obstacles. Here, a potential route leading to infrared electronic eyes is demonstrated by exploring flexible colloidal quantum dot (CQD) photovoltaic detectors. Benefitting from their tunable optical response and the ease of fabrication as solution processable materials, mercury telluride (HgTe) CQD detectors with mechanical flexibility, wide spectral sensing range, fast response, and high detectivity are demonstrated. A strategy is provided to further enhance the light absorption in flexible detectors by integrating a Fabry–Perot resonant cavity. Integrated short‐wave IR detectors on flexible substrates have peakD*of 7.5 × 1010Jones at 2.2 µm at room temperature and promise the development of infrared electronic eyes with high‐resolution imaging capability. Finally, infrared images are captured with the flexible CQD detectors at varying bending conditions, showing a practical approach to sensitive infrared electronic eyes beyond the visible range.

     
    more » « less
  2. Abstract

    Hemispherical image sensors simplify lens designs, reduce optical aberrations, and improve image resolution for compact wide‐field‐of‐view cameras. To achieve hemispherical image sensors, organic materials are promising candidates due to the following advantages: tunability of optoelectronic/spectral response and low‐temperature low‐cost processes. Here, a photolithographic process is developed to prepare a hemispherical image sensor array using organic thin film photomemory transistors with a density of 308 pixels per square centimeter. This design includes only one photomemory transistor as a single active pixel, in contrast to the conventional pixel architecture, consisting of select/readout/reset transistors and a photodiode. The organic photomemory transistor, comprising light‐sensitive organic semiconductor and charge‐trapping dielectric, is able to achieve a linear photoresponse (light intensity range, from 1 to 50 W m−2), along with a responsivity as high as 1.6 A W−1(wavelength = 465 nm) for a dark current of 0.24 A m−2(drain voltage = −1.5 V). These observed values represent the best responsivity for similar dark currents among all the reported hemispherical image sensor arrays to date. A transfer method was further developed that does not damage organic materials for hemispherical organic photomemory transistor arrays. These developed techniques are scalable and are amenable for other high‐resolution 3D organic semiconductor devices.

     
    more » « less
  3. Abstract

    The Circumgalactic HαSpectrograph (CHαS) is a ground-based optical integral field spectrograph designed to detect ultrafaint extended emission from diffuse ionized gas in the nearby universe. CHαS is particularly well suited for making direct detections of tenuous Hαemission from the circumgalactic medium (CGM) surrounding low-redshift galaxies. It efficiently maps large regions of the CGM in a single exposure, targeting nearby galaxies (d< 35 Mpc) where the CGM is expected to fill the field of view. We are commissioning CHαS as a facility instrument at MDM Observatory. CHαS is deployed in the focal plane of the Hiltner 2.4 m telescope, utilizing nearly all of the telescope’s unvignetted focal plane (10′–15′) to conduct wide-field spectroscopic imaging. The catadioptric design provides excellent wide-field imaging performance. CHαS is a pupil-imaging spectrograph employing a microlens array to divide the field of view into >60,000 spectra. CHαS achieves an angular resolution of [1.3–2.6] arcseconds and a resolving power ofR= [10,000–20,000]. Accordingly, the spectrograph can resolve structure on the scale of 1–5 kpc (at 10 Mpc) and measure velocities down to 15–30 km s−1. CHαS intentionally operates over a narrow (30 Å) bandpass; however, it is configured to adjust the central wavelength and target a broad range of optical emission lines individually. A high–diffraction efficiency volume phase holographic grating ensures high throughput across configurations. CHαS maintains a high grasp and moderate spectral resolution, providing an ideal combination for mapping discrete, ultralow–surface brightness emission on the order of a few milli-Rayleigh.

     
    more » « less
  4. Abstract

    The COSMOS field has been extensively observed by most major telescopes, including Chandra, HST, and Subaru. HST imaging boasts very high spatial resolution and is used extensively in morphological studies of distant galaxies. Subaru provides lower spatial resolution imaging than HST but a substantially wider field of view with greater sensitivity. Both telescopes provide near-infrared imaging of COSMOS. Successful morphological fitting of Subaru data would allow us to measure morphologies of over 104known active galactic nucleus (AGN) hosts, accessible through Subaru wide-field surveys, currently not covered by HST. The morphological parameters indicate the types of galaxies that host AGNs. For 4016 AGNs between 0.03 <z< 6.5, we study the morphology of their galaxy hosts using GALFIT, fitting components representing the AGN and host galaxy simultaneously using thei-band imaging from both HST and Subaru. Comparing the fits for the differing telescope spatial resolutions and image signal-to-noise ratios, we identify parameter regimes for which there is strong disagreement between distributions of fitted parameters for HST and Subaru. In particular, the Sérsic index values strongly disagree between the two sets of data, including sources at lower redshifts. In contrast, the measured magnitude and radius parameters show reasonable agreement. Additionally, large variations in the Sérsic index have little effect on theχν2of each fit, whereas variations in other parameters have a more significant effect. These results indicate that the Sérsic index distributions of high-redshift galaxies that host AGNs imaged at ground-based spatial resolution are not reliable indicators of galaxy type and should be interpreted with caution.

     
    more » « less
  5. Abstract

    One of the most significant developments in life sciences—the discovery of bacteria and protists—was accomplished by Antoni van Leeuwenhoek in the 17thcentury using a single ball lens microscope. It is shown that the full potential of single lens designs can be realized in a contact mode of imaging by ball lenses with a refractive index of n≈ 2, suitable for developing compact cellphone‐based microscopes. The quality of imaging is comparable to basic compound microscopes, but with a narrower field‐of‐view, and is demonstrated for various biomedical samples. The maximal magnification (M > 50) with the highest resolution (≈0.66 µm atλ= 589 nm) is achieved for imaging of nanoplasmonic structures by ball lenses made from LASFN35 glass, the index of which is tuned nearn =2 using chromatic dispersion. Due to limitations of geometrical optics, the imaging theory is developed based on an exact numerical solution of the Maxwell equations, including spherical aberration and the nearfield coupling of a point source. The modeling is performed using multiscale analysis: from the field propagation inside ball lenses with diameters 30 < D/λ < 4000 to the formation of the diffracted field at distances of ≈105λ. It is shown that such imaging enables the transition from pixel‐ to diffraction‐limited resolution in cellphone microscopy.

     
    more » « less