How do we know if a particular medical treatment actually works? Ideally one would consult all available evidence from relevant clinical trials. Unfortunately, such results are primarily disseminated in natural language scientific articles, imposing substantial burden on those trying to make sense of them. In this paper, we present a new task and corpus for making this unstructured evidence actionable. The task entails inferring reported findings from a full-text article describing a randomized controlled trial (RCT) with respect to a given intervention, comparator, and outcome of interest, e.g., inferring if an article provides evidence supporting the use of aspirin to reduce risk of stroke, as compared to placebo. We present a new corpus for this task comprising 10,000+ prompts coupled with fulltext articles describing RCTs. Results using a suite of models — ranging from heuristic (rule-based) approaches to attentive neural architectures — demonstrate the difficulty of the task, which we believe largely owes to the lengthy, technical input texts. To facilitate further work on this important, challenging problem we make the corpus, documentation, a website and leaderboard, and code for baselines and evaluation available at http: //evidence-inference.ebm-nlp.com/.
more »
« less
Trialstreamer: A living, automatically updated database of clinical trial reports
Abstract Objective Randomized controlled trials (RCTs) are the gold standard method for evaluating whether a treatment works in health care but can be difficult to find and make use of. We describe the development and evaluation of a system to automatically find and categorize all new RCT reports. Materials and Methods Trialstreamer continuously monitors PubMed and the World Health Organization International Clinical Trials Registry Platform, looking for new RCTs in humans using a validated classifier. We combine machine learning and rule-based methods to extract information from the RCT abstracts, including free-text descriptions of trial PICO (populations, interventions/comparators, and outcomes) elements and map these snippets to normalized MeSH (Medical Subject Headings) vocabulary terms. We additionally identify sample sizes, predict the risk of bias, and extract text conveying key findings. We store all extracted data in a database, which we make freely available for download, and via a search portal, which allows users to enter structured clinical queries. Results are ranked automatically to prioritize larger and higher-quality studies. Results As of early June 2020, we have indexed 673 191 publications of RCTs, of which 22 363 were published in the first 5 months of 2020 (142 per day). We additionally include 304 111 trial registrations from the International Clinical Trials Registry Platform. The median trial sample size was 66. Conclusions We present an automated system for finding and categorizing RCTs. This yields a novel resource: a database of structured information automatically extracted for all published RCTs in humans. We make daily updates of this database available on our website (https://trialstreamer.robotreviewer.net).
more »
« less
- Award ID(s):
- 1750978
- PAR ID:
- 10232688
- Date Published:
- Journal Name:
- Journal of the American Medical Informatics Association
- Volume:
- 27
- Issue:
- 12
- ISSN:
- 1527-974X
- Page Range / eLocation ID:
- 1903 to 1912
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Lau, Eric HY (Ed.)Randomized controlled trials (RCTs) evaluate hypotheses in specific contexts and are often considered the gold standard of evidence for infectious disease interventions, but their results cannot immediately generalize to other contexts (e.g., different populations, interventions, or disease burdens). Mechanistic models are one approach to generalizing findings between contexts, but infectious disease transmission models (IDTMs) are not immediately suited for analyzing RCTs, since they often rely on time-series surveillance data. We developed an IDTM framework to explain relative risk outcomes of an infectious disease RCT and applied it to a water, sanitation, and hygiene (WASH) RCT. This model can generalize the RCT results to other contexts and conditions. We developed this compartmental IDTM framework to account for key WASH RCT factors: i) transmission across multiple environmental pathways, ii) multiple interventions applied individually and in combination, iii) adherence to interventions or preexisting conditions, and iv) the impact of individuals not enrolled in the study. We employed a hybrid sampling and estimation framework to obtain posterior estimates of mechanistic parameter sets consistent with empirical outcomes. We illustrated our model using WASH Benefits Bangladesh RCT data (n = 17,187). Our model reproduced reported diarrheal prevalence in this RCT. The baseline estimate of the basic reproduction number R 0 for the control arm (1.10, 95% CrI: 1.07, 1.16) corresponded to an endemic prevalence of 9.5% (95% CrI: 7.4, 13.7%) in the absence of interventions or preexisting WASH conditions. No single pathway was likely able to sustain transmission: pathway-specific R 0 s for water, fomites, and all other pathways were 0.42 (95% CrI: 0.03, 0.97), 0.20 (95% CrI: 0.02, 0.59), and 0.48 (95% CrI: 0.02, 0.94), respectively. An IDTM approach to evaluating RCTs can complement RCT analysis by providing a rigorous framework for generating data-driven hypotheses that explain trial findings, particularly unexpected null results, opening up existing data to deeper epidemiological understanding.more » « less
-
Abstract Randomized controlled trials (RCTs) admit unconfounded design-based inference – randomization largely justifies the assumptions underlying statistical effect estimates – but often have limited sample sizes. However, researchers may have access to big observational data on covariates and outcomes from RCT nonparticipants. For example, data from A/B tests conducted within an educational technology platform exist alongside historical observational data drawn from student logs. We outline a design-based approach to using such observational data for variance reduction in RCTs. First, we use the observational data to train a machine learning algorithm predicting potential outcomes using covariates and then use that algorithm to generate predictions for RCT participants. Then, we use those predictions, perhaps alongside other covariates, to adjust causal effect estimates with a flexible, design-based covariate-adjustment routine. In this way, there is no danger of biases from the observational data leaking into the experimental estimates, which are guaranteed to be exactly unbiased regardless of whether the machine learning models are “correct” in any sense or whether the observational samples closely resemble RCT samples. We demonstrate the method in analyzing 33 randomized A/B tests and show that it decreases standard errors relative to other estimators, sometimes substantially.more » « less
-
Clinical trials are crucial for the advancement of treatment and knowledge within the medical community. Since 2007, US federal government took the initiative and requires organizations sponsoring clinical trials with at least one site in the United States to submit information on these clinical trials to the ClinicalTrials.gov database, resulting in a rich source of information for clinical trial research. Nevertheless, only a handful of analytic studies have been carried out to understand this valuable data source. In this study, we propose to use network analysis to understand infectious disease clinical trial research. Our goal is to answer two important questions: (1) what are the concentrations and characteristics of infectious disease clinical trail research? and (2) how to accurately predict what type of clinical trials a sponsor (or an investigator) is interested in? The answers to the first question provide effective ways to summarize clinical trial research related to particular disease(s), and the answers to the second question help match clinical trial sponsors and investigators for information recommendation. By using 4,228 clinical trails as the test bed, our study involves 4,864 sponsors and 1,879 research areas characterized by Medical Subject Heading (MeSH) keywords. We extract a set of network measures to show patterns of infectious disease clinical trials, and design a new community based link prediction approach to predict sponsors' interests, with significant improvement compared to baselines. This trans-formative study concludes that using network analysis can tremendously help the understanding of clinical trial research for effective summarization, characterization, and prediction.more » « less
-
null (Ed.)A natural language processing (NLP) application requires sophisticated lexical resources to support its processing goals. Different solutions, such as dictionary lookup and MetaMap, have been proposed in the healthcare informatics literature to identify disease terms with more than one word (multi-gram disease named entities). Although a lot of work has been done in the identification of protein- and gene-named entities in the biomedical field, not much research has been done on the recognition and resolution of terminologies in the clinical trial subject eligibility analysis. In this study, we develop a specialized lexicon for improving NLP and text mining analysis in the breast cancer domain, and evaluate it by comparing it with the Systematized Nomenclature of Medicine Clinical Terms (SNOMED CT). We use a hybrid methodology, which combines the knowledge of domain experts, terms from multiple online dictionaries, and the mining of text from sample clinical trials. Use of our methodology introduces 4243 unique lexicon items, which increase bigram entity match by 38.6% and trigram entity match by 41%. Our lexicon, which adds a significant number of new terms, is very useful for matching patients to clinical trials automatically based on eligibility matching. Beyond clinical trial matching, the specialized lexicon developed in this study could serve as a foundation for future healthcare text mining applications.more » « less
An official website of the United States government

