skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Polymer-Encased Nanodiscs and Polymer Nanodiscs: New Platforms for Membrane Protein Research and Applications
Membrane proteins (MPs) are essential to many organisms’ major functions. They are notorious for being difficult to isolate and study, and mimicking native conditions for studies in vitro has proved to be a challenge. Lipid nanodiscs are among the most promising platforms for MP reconstitution, but they contain a relatively labile lipid bilayer and their use requires previous protein solubilization in detergent. These limitations have led to the testing of copolymers in new types of nanodisc platforms. Polymer-encased nanodiscs and polymer nanodiscs support functional MPs and address some of the limitations present in other MP reconstitution platforms. In this review, we provide a summary of recent developments in the use of polymers in nanodiscs.  more » « less
Award ID(s):
1810767 1623241 1623240
NSF-PAR ID:
10232743
Author(s) / Creator(s):
Editor(s):
Alarcon, Emilio I.
Date Published:
Journal Name:
Frontiers in bioengineering and biotechnology
Volume:
8
ISSN:
2296-4185
Page Range / eLocation ID:
598450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Membrane proteins can be reconstituted in polymer-encased nanodiscs for studies under near-physiological conditions and in the absence of detergents, but traditional styrene-maleic acid copolymers used for this purpose suffer severely from buffer incompatibilities. We have recently introduced zwitterionic styrene-maleic amide copolymers (zSMAs) to overcome this limitation. Here, we compared the extraction and reconstitution of membrane proteins into lipid nanodiscs by a series of zSMAs with different styrene:maleic amide molar ratios, chain sizes, and molecular weight distributions. These copolymers solubilize, stabilize, and support membrane proteins in nanodiscs with different efficiencies depending on both the structure of the copolymers and the membrane proteins.

     
    more » « less
  2. Cancer therapy is a significant challenge due to insufficient drug delivery to the cancer cells and non-selective killing of healthy cells by most chemotherapy agents. Nano-formulations have shown great promise for targeted drug delivery with improved efficiency. The shape and size of nanocarriers significantly affect their transport inside the body and internalization into the cancer cells. Non-spherical nanoparticles have shown prolonged blood circulation half-lives and higher cellular internalization frequency than spherical ones. Nanodiscs are desirable nano-formulations that demonstrate enhanced anisotropic character and versatile functionalization potential. Here, we review the recent development of theranostic nanodiscs for cancer mitigation ranging from traditional lipid nanodiscs encased by membrane scaffold proteins to newer nanodiscs where either the membrane scaffold proteins or the lipid bilayers themselves are replaced with their synthetic analogues. We first discuss early cancer detection enabled by nanodiscs. We then explain different strategies that have been explored to carry a wide range of payloads for chemotherapy, cancer gene therapy, and cancer vaccines. Finally, we discuss recent progress on organic–inorganic hybrid nanodiscs and polymer nanodiscs that have the potential to overcome the inherent instability problem of lipid nanodiscs. 
    more » « less
  3. null (Ed.)
    In the study of membrane proteins and antimicrobial peptides, nanodiscs have emerged as a valuable membrane mimetic to solubilze these molecules in a lipid bilayer. We present the structural characterization of nanodiscs using native mass spectrometry and surface-induced dissociation, which are powerful tools in structural biology. 
    more » « less
  4. Stormwater runoff is a pathway of entry for microplastics (MPs, plastics <5 mm) into aquatic ecosystems. The objectives of this study were to determine MP size, morphology, chemical composition, and loading across urban storm events. Particles were extracted from stormwater samples collected at outfall locations using wet peroxide oxidation and cellulose digestion followed by analysis via attenuated total reflectance (ATR) FTIR. Concentrations observed were 0.99 ± 1.10 MP/L for 500–1000 μm and 0.41 ± 0.30 MP/L for the 1000–5000 μm size ranges. Seventeen different polymer types were observed. MP particle sizes measured using a FTIR-microscope camera indicated non-target size particles based on sieve-size classification, highlighting a potential source of error in studies reporting concentration by size class. A maximum MP load of 38.3 MP/m2 of upstream catchment was calculated. MP loadings had moderate correlations with both rainfall accumulation and intensity (Kendall τ = 0.54 and 0.42, respectively, both p ≤ 0.005). First flush (i.e. rapid wash-off of pollutants from watershed surfaces during rainfall early stages) was not always observed, and antecedent dry days were not correlated with MP abundance, likely due to the short dry periods between sampling events. Overall, the results presented provide data for risk assessment and mitigation strategies. 
    more » « less
  5. Abstract

    Microplastics (MPs) and nanoplastics (NPs) are pervasive environmental pollutants that are commonly ingested by organisms at different trophic levels. While the effects of MPs on aquatic organisms have been extensively studied, the impacts of MP ingestion on the host fitness of terrestrial organisms, mainly insects, have been relatively unexplored. This study investigates the effects of MP and NP ingestion on the survivorship and reproduction of 2 medically important mosquito species, Aedes aegypti Linnaeus (Diptera: Culicidae) and Aedes albopictus Skuse (Diptera: Culicidae). Larval and pupal survivorship of Ae. albopictus were not significantly affected by particle size or concentration, but there was a reduction of Ae. aegypti pupal survivorship associated with the ingestion of 0.03 µm NPs. In addition, there was little observed impact of 0.03 µm NP and 1.0 µm MP ingestion on adult survivorship, fecundity, and longevity. To further investigate the effects of MP ingestion on mosquito fitness, we also examined the effects of MPs of varying shape, size, and plastic polymer type on Ae. aegypti immature and adult survivorship. The data suggest that the polymer type and shape did not impact Ae. aegypti immature or adult survivorship. These findings highlight that understanding the effects of microplastic ingestion by mosquitoes may be complicated by the size, composition, and amount ingested.

     
    more » « less