skip to main content


Title: The impact of epitranscriptomic marks on post-transcriptional regulation in plants
Abstract Ribonucleotides within the various RNA molecules in eukaryotes are marked with more than 160 distinct covalent chemical modifications. These modifications include those that occur internally in messenger RNA (mRNA) molecules such as N6-methyladenosine (m6A) and 5-methylcytosine (m5C), as well as those that occur at the ends of the modified RNAs like the non-canonical 5′ end nicotinamide adenine dinucleotide (NAD+) cap modification of specific mRNAs. Recent findings have revealed that covalent RNA modifications can impact the secondary structure, translatability, functionality, stability and degradation of the RNA molecules in which they are included. Many of these covalent RNA additions have also been found to be dynamically added and removed through writer and eraser complexes, respectively, providing a new layer of epitranscriptome-mediated post-transcriptional regulation that regulates RNA quality and quantity in eukaryotic transcriptomes. Thus, it is not surprising that the regulation of RNA fate mediated by these epitranscriptomic marks has been demonstrated to have widespread effects on plant development and the responses of these organisms to abiotic and biotic stresses. In this review, we highlight recent progress focused on the study of the dynamic nature of these epitranscriptome marks and their roles in post-transcriptional regulation during plant development and response to environmental cues, with an emphasis on the mRNA modifications of non-canonical 5′ end NAD+ capping, m6A and several other internal RNA modifications.  more » « less
Award ID(s):
1849708 2023310
NSF-PAR ID:
10232789
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Briefings in Functional Genomics
Volume:
20
Issue:
2
ISSN:
2041-2649
Page Range / eLocation ID:
113 to 124
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY

    Plants respond to low temperatures by altering the mRNA abundance of thousands of genes contributing to numerous physiological and metabolic processes that allow them to adapt. At the post‐transcriptional level, these cold stress‐responsive transcripts undergo alternative splicing, microRNA‐mediated regulation and alternative polyadenylation, amongst others. Recently, m6A, m5C and other mRNA modifications that can affect the regulation and stability of RNA were discovered, thus revealing another layer of post‐transcriptional regulation that plays an important role in modulating gene expression. The importance of m6A in plant growth and development has been appreciated, although its significance under stress conditions is still underexplored. To assess the role of m6A modifications during cold stress responses, methylated RNA immunoprecipitation sequencing was performed in Arabidopsis seedlings esposed to low temperature stress (4°C) for 24 h. This transcriptome‐wide m6A analysis revealed large‐scale shifts in this modification in response to low temperature stress. Because m6A is known to affect transcript stability/degradation and translation, we investigated these possibilities. Interestingly, we found that cold‐enriched m6A‐containing transcripts demonstrated the largest increases in transcript abundance coupled with increased ribosome occupancy under cold stress. The significance of the m6A epitranscriptome on plant cold tolerance was further assessed using themtamutant in which the major m6A methyltransferase gene was mutated. Compared to the wild‐type, along with the differences inCBFsandCORgene expression levels, themtamutant exhibited hypersensitivity to cold treatment as determined by primary root growth, biomass, and reactive oxygen species accumulation. Furthermore, and most importantly, both non‐acclimated and cold‐acclimatedmtamutant demonstrated hypersensitivity to freezing tolerance. Taken together, these findings suggest a critical role for the epitranscriptome in cold tolerance of Arabidopsis.

     
    more » « less
  2. RNA plays essential roles in not only translating nucleic acids into proteins, but also in gene regulation, environmental interactions and many human diseases. Nature uses over 150 chemical modifications to decorate RNA and diversify its functions. With the fast-growing RNA research in the burgeoning field of 'epitranscriptome', a term describes post-transcriptional RNA modifications that can dynamically change the transcriptome, it becomes clear that these modifications participate in modulating gene expression and controlling the cell fate, thereby igniting the new interests in RNA-based drug discovery. The dynamics of these RNA chemical modifications is orchestrated by coordinated actions of an array of writer, reader and eraser proteins. Deregulated expression of these RNA modifying proteins can lead to many human diseases including cancer. In this review, we highlight several critical modifications, namely m6A, m1A, m5C, inosine and pseudouridine, in both coding and non-coding RNAs. In parallel, we present a few other cancer-related tRNA and rRNA modifications. We further discuss their roles in cancer promotion or tumour suppression. Understanding the molecular mechanisms underlying the biogenesis and turnover of these RNA modifications will be of great significance in the design and development of novel anticancer drugs. 
    more » « less
  3. null (Ed.)
    Transfer RNAs (tRNAs) are essential adaptors that mediate translation of the genetic code. These molecules undergo a variety of post-transcriptional modifications, which expand their chemical reactivity while influencing their structure, stability, and functionality. Chemical modifications to tRNA ensure translational competency and promote cellular viability. Hence, the placement and prevalence of tRNA modifications affects the efficiency of aminoacyl tRNA synthetase (aaRS) reactions, interactions with the ribosome, and transient pairing with messenger RNA (mRNA). The synthesis and abundance of tRNA modifications respond directly and indirectly to a range of environmental and nutritional factors involved in the maintenance of metabolic homeostasis. The dynamic landscape of the tRNA epitranscriptome suggests a role for tRNA modifications as markers of cellular status and regulators of translational capacity. This review discusses the non-canonical roles that tRNA modifications play in central metabolic processes and how their levels are modulated in response to a range of cellular demands. 
    more » « less
  4. Abstract

    Although covalent nucleotide modifications were first identified on the bases of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), a number of these epitranscriptome marks have also been found to occur on the bases of messenger RNAs (mRNAs). These covalent mRNA features have been demonstrated to have various and significant effects on the processing (e.g. splicing, polyadenylation, etc.) and functionality (e.g. translation, transport, etc.) of these protein-encoding molecules. Here, we focus our attention on the current understanding of the collection of covalent nucleotide modifications known to occur on mRNAs in plants, how they are detected and studied, and the most outstanding future questions of each of these important epitranscriptomic regulatory signals.

     
    more » « less
  5. null (Ed.)
    Abstract Chemical modifications of proteins, DNA, and RNA moieties play critical roles in regulating gene expression. Emerging evidence suggests the RNA modifications (epitranscriptomics) have substantive roles in basic biological processes. One of the most common modifications in mRNA and noncoding RNAs is N6-methyladenosine (m6A). In a subset of mRNAs, m6A sites are preferentially enriched near stop codons, in 3′ UTRs, and within exons, suggesting an important role in the regulation of mRNA processing and function including alternative splicing and gene expression. Very little is known about the effect of environmental chemical exposure on m6A modifications. As many of the commonly occurring environmental contaminants alter gene expression profiles and have detrimental effects on physiological processes, it is important to understand the effects of exposure on this important layer of gene regulation. Hence, the objective of this study was to characterize the acute effects of developmental exposure to PCB126, an environmentally relevant dioxin-like PCB, on m6A methylation patterns. We exposed zebrafish embryos to PCB126 for 6 h starting from 72 h post fertilization and profiled m6A RNA using methylated RNA immunoprecipitation followed by sequencing (MeRIP-seq). Our analysis revealed 117 and 217 m6A peaks in the DMSO and PCB126 samples (false discovery rate 5%), respectively. The majority of the peaks were preferentially located around the 3′ UTR and stop codons. Statistical analysis revealed 15 m6A marked transcripts to be differentially methylated by PCB126 exposure. These include transcripts that are known to be activated by AHR agonists (eg, ahrra, tiparp, nfe2l2b) as well as others that are important for normal development (vgf, cebpd, sned1). These results suggest that environmental chemicals such as dioxin-like PCBs could affect developmental gene expression patterns by altering m6A levels. Further studies are necessary to understand the functional consequences of exposure-associated alterations in m6A levels. 
    more » « less