skip to main content


Title: Enhancing Conceptual Knowledge in Early Algebra Through Scaffolding Diagrammatic Self-explanation
Many studies have shown that visual representations can enhance student understanding of STEM concepts. However, prior research suggests that visual representations alone are not necessarily effective across a broad range of students. To address this problem, we created a novel, scaffolded form of diagrammatic self-explanation in which students explain their problem-solving steps in the form of diagrams. We used contrasting cases to support students’ sense-making between algebraic equations and diagrams in the self-explanation activity. We conducted a classroom experiment with 41 students in grades 5 and 6 to test the effectiveness of this strategy when embedded in an Intelligent Tutoring System for algebra. We found that scaffolded diagrammatic self-explanation enhanced conceptual knowledge for students who did not have prior knowledge of formal equation-solving strategies. The study is the first experimental study showing that visual representations can enhance conceptual knowledge in early algebra.  more » « less
Award ID(s):
1760947
NSF-PAR ID:
10232795
Author(s) / Creator(s):
; ; ; ; ;
Editor(s):
Gresalfi, M.; Horn, I. S.
Date Published:
Journal Name:
The Interdisciplinarity of the Learning Sciences, 14th International Conference of the Learning Sciences (ICLS) 2020
Volume:
Volume 1
Page Range / eLocation ID:
35-42
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many studies have shown that visual representations can enhance student understanding of STEM concepts. However, prior research suggests that visual representations alone are not necessarily effective across a broad range of students. To address this problem, we created a novel, scaffolded form of diagrammatic self-explanation in which students explain their problem-solving steps in the form of diagrams. We used contrasting cases to support students’ sense-making between algebraic equations and diagrams in the self-explanation activity. We conducted a classroom experiment with 41 students in grades 5 and 6 to test the effectiveness of this strategy when embedded in an Intelligent Tutoring System for algebra. We found that scaffolded diagrammatic self-explanation enhanced conceptual knowledge for students who did not have prior knowledge of formal equation-solving strategies. The study is the first experimental study showing that visual representations can enhance conceptual knowledge in early algebra. 
    more » « less
  2. de Vries, E. ; Ahn, J. ; Hod, Y. (Ed.)
    Prior research shows that self-explanation promotes understanding by helping learners connect new knowledge with prior knowledge. However, despite ample evidence supporting the effectiveness of self-explanation, an instructional design challenge emerges in how best to scaffold self-explanation. In particular, it is an open challenge to design self-explanation support that simultaneously facilitates performance and learning outcomes. Towards this goal, we designed anticipatory diagrammatic self-explanation, a novel form of self-explanation embedded in an Intelligent Tutoring System (ITS). In our ITS, anticipatory diagrammatic self-explanation scaffolds learners by providing visual representations to help learners predict an upcoming strategic step in algebra problem solving. A classroom experiment with 108 middle-school students found that anticipatory diagrammatic self-explanation helped students learn formal algebraic strategies and significantly improve their problem-solving performance. This study contributes to understanding of how self-explanation can be scaffolded to support learning and performance. 
    more » « less
  3. de Vries, E. ; Ahn, J. ; Y. Hod, Y. (Ed.)
    Prior research shows that self-explanation promotes understanding by helping learners connect new knowledge with prior knowledge. However, despite ample evidence supporting the effectiveness of self-explanation, an instructional design challenge emerges in how best to scaffold self-explanation. In particular, it is an open challenge to design self-explanation support that simultaneously facilitates performance and learning outcomes. Towards this goal, we designed anticipatory diagrammatic self-explanation, a novel form of self-explanation embedded in an Intelligent Tutoring System (ITS). In our ITS, anticipatory diagrammatic self-explanation scaffolds learners by providing visual representations to help learners predict an upcoming strategic step in algebra problem solving. A classroom experiment with 108 middle-school students found that anticipatory diagrammatic self-explanation helped students learn formal algebraic strategies and significantly improve their problem-solving performance. This study contributes to understanding of how self-explanation can be scaffolded to support learning and performance. 
    more » « less
  4. Fitch, T. ; Lamm, C. ; Leder, H. ; Teßmar-Raible, K. (Ed.)
    Although visual representations are generally beneficial for learners, past research also suggests that often only a subset of learners benefits from visual representations. In this work, we designed and evaluated anticipatory diagrammatic self-explanation, a novel form of instructional scaffolding in which visual representations are used to guide learners’ inference generation as they solve algebra problems in an Intelligent Tutoring System. We conducted a classroom experiment with 84 students in grades 5-8 in the US to investigate the effectiveness of anticipatory diagrammatic self-explanation on algebra performance and learning. The results show that anticipatory diagrammatic self-explanation benefits learners on problem-solving performance and the acquisition of formal problem-solving strategies. These effects mostly did not depend on students’ prior knowledge. We analyze and discuss how performance with the visual representation may have influenced the enhanced problem-solving performance. 
    more » « less
  5. Culbertson, J. ; Perfors, A. ; Rabagliati, H. ; Ramenzoni, V. (Ed.)
    Integrating visual representations in an interactive learning activity effectively scaffolds performance and learning. However, it is unclear whether and how sustaining or interleaving visual scaffolding helps learners solve problems efficiently and learn from problem solving. We conducted a classroom study with 63 middle-school students in which we tested whether sustaining or interleaving a particular form of visual scaffolding, called anticipatory diagrammatic self-explanation in an Intelligent Tutoring System, helps students’ learning and performance in the domain of early algebra. Sustaining visual scaffolding during problem solving helped students solve problems efficiently with no negative effects on learning. However, in-depth log data analyses suggest that interleaving visual scaffolding allowed students to practice important skills that may help them in later phases of algebra learning. This paper extends scientific understanding that sustaining visual scaffold does not over-scaffold student learning in the early phase of skill acquisition in algebra. 
    more » « less