skip to main content


Title: Unexpected genomic, biosynthetic and species diversity of Streptomyces bacteria from bats in Arizona and New Mexico, USA
Abstract Background Antibiotic-producing Streptomyces bacteria are ubiquitous in nature, yet most studies of its diversity have focused on free-living strains inhabiting diverse soil environments and those in symbiotic relationship with invertebrates. Results We studied the draft genomes of 73 Streptomyces isolates sampled from the skin (wing and tail membranes) and fur surfaces of bats collected in Arizona and New Mexico. We uncovered large genomic variation and biosynthetic potential, even among closely related strains. The isolates, which were initially identified as three distinct species based on sequence variation in the 16S rRNA locus, could be distinguished as 41 different species based on genome-wide average nucleotide identity. Of the 32 biosynthetic gene cluster (BGC) classes detected, non-ribosomal peptide synthetases, siderophores, and terpenes were present in all genomes. On average, Streptomyces genomes carried 14 distinct classes of BGCs (range = 9–20). Results also revealed large inter- and intra-species variation in gene content (single nucleotide polymorphisms, accessory genes and singletons) and BGCs, further contributing to the overall genetic diversity present in bat-associated Streptomyces . Finally, we show that genome-wide recombination has partly contributed to the large genomic variation among strains of the same species. Conclusions Our study provides an initial genomic assessment of bat-associated Streptomyces that will be critical to prioritizing those strains with the greatest ability to produce novel antibiotics. It also highlights the need to recognize within-species variation as an important factor in genetic manipulation studies, diversity estimates and drug discovery efforts in Streptomyces .  more » « less
Award ID(s):
2055120
NSF-PAR ID:
10233027
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
BMC Genomics
Volume:
22
Issue:
1
ISSN:
1471-2164
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Streptomycesbacteria are known for their prolific production of secondary metabolites, many of which have been widely used in human medicine, agriculture and animal health. To guide the effective prioritization of specific biosynthetic gene clusters (BGCs) for drug development and targeting the most prolific producer strains, knowledge about phylogenetic relationships ofStreptomycesspecies, genome-wide diversity and distribution patterns of BGCs is critical. We used genomic and phylogenetic methods to elucidate the diversity of major classes of BGCs in 1,110 publicly availableStreptomycesgenomes. Genome mining ofStreptomycesreveals high diversity of BGCs and variable distribution patterns in theStreptomycesphylogeny, even among very closely related strains. The most common BGCs are non-ribosomal peptide synthetases, type 1 polyketide synthases, terpenes, and lantipeptides. We also found that numerousStreptomycesspecies harbor BGCs known to encode antitumor compounds. We observed that strains that are considered the same species can vary tremendously in the BGCs they carry, suggesting that strain-level genome sequencing can uncover high levels of BGC diversity and potentially useful derivatives of any one compound. These findings suggest that a strain-level strategy for exploring secondary metabolites for clinical use provides an alternative or complementary approach to discovering novel pharmaceutical compounds from microbes.

     
    more » « less
  2. Simmons, Lyle A. ; Bush, Karen (Ed.)
    ABSTRACT Unique DNA repair enzymes that provide self-resistance against therapeutically important, genotoxic natural products have been discovered in bacterial biosynthetic gene clusters (BGCs). Among these, the DNA glycosylase AlkZ is essential for azinomycin B production and belongs to the HTH_42 superfamily of uncharacterized proteins. Despite their widespread existence in antibiotic producers and pathogens, the roles of these proteins in production of other natural products are unknown. Here, we determine the evolutionary relationship and genomic distribution of all HTH_42 proteins from Streptomyces and use a resistance-based genome mining approach to identify homologs associated with known and uncharacterized BGCs. We find that AlkZ-like (AZL) proteins constitute one distinct HTH_42 subfamily and are highly enriched in BGCs and variable in sequence, suggesting each has evolved to protect against a specific secondary metabolite. As a validation of the approach, we show that the AZL protein, HedH4, associated with biosynthesis of the alkylating agent hedamycin, excises hedamycin-DNA adducts with exquisite specificity and provides resistance to the natural product in cells. We also identify a second, phylogenetically and functionally distinct subfamily whose proteins are never associated with BGCs, are highly conserved with respect to sequence and genomic neighborhood, and repair DNA lesions not associated with a particular natural product. This work delineates two related families of DNA repair enzymes—one specific for complex alkyl-DNA lesions and involved in self-resistance to antimicrobials and the other likely involved in protection against an array of genotoxins—and provides a framework for targeted discovery of new genotoxic compounds with therapeutic potential. IMPORTANCE Bacteria are rich sources of secondary metabolites that include DNA-damaging genotoxins with antitumor/antibiotic properties. Although Streptomyces produce a diverse number of therapeutic genotoxins, efforts toward targeted discovery of biosynthetic gene clusters (BGCs) producing DNA-damaging agents is lacking. Moreover, work on toxin-resistance genes has lagged behind our understanding of those involved in natural product synthesis. Here, we identified over 70 uncharacterized BGCs producing potentially novel genotoxins through resistance-based genome mining using the azinomycin B-resistance DNA glycosylase AlkZ. We validate our analysis by characterizing the enzymatic activity and cellular resistance of one AlkZ ortholog in the BGC of hedamycin, a potent DNA alkylating agent. Moreover, we uncover a second, phylogenetically distinct family of proteins related to Escherichia coli YcaQ, a DNA glycosylase capable of unhooking interstrand DNA cross-links, which differs from the AlkZ-like family in sequence, genomic location, proximity to BGCs, and substrate specificity. This work defines two families of DNA glycosylase for specialized repair of complex genotoxic natural products and generalized repair of a broad range of alkyl-DNA adducts and provides a framework for targeted discovery of new compounds with therapeutic potential. 
    more » « less
  3. The influence of genetic drift on population dynamics during Pleistocene glacial cycles is well understood, but the role of selection in shaping patterns of genomic variation during these events is less explored. We resequenced whole genomes to investigate how demography and natural selection interact to generate the genomic landscapes of Downy and Hairy Woodpecker, species codistributed in previously glaciated North America. First, we explored the spatial and temporal patterns of genomic diversity produced by neutral evolution. Next, we tested (i) whether levels of nucleotide diversity along the genome are correlated with intrinsic genomic properties, such as recombination rate and gene density, and (ii) whether different demographic trajectories impacted the efficacy of selection. Our results revealed cycles of bottleneck and expansion, and genetic structure associated with glacial refugia. Nucleotide diversity varied widely along the genome, but this variation was highly correlated between the species, suggesting the presence of conserved genomic features. In both taxa, nucleotide diversity was positively correlated with recombination rate and negatively correlated with gene density, suggesting that linked selection played a role in reducing diversity. Despite strong fluctuations in effective population size, the maintenance of relatively large populations during glaciations may have facilitated selection. Under these conditions, we found evidence that the individual demographic trajectory of populations modulated linked selection, with purifying selection being more efficient in removing deleterious alleles in large populations. These results highlight that while genome-wide variation reflects the expected signature of demographic change during climatic perturbations, the interaction of multiple processes produces a predictable and highly heterogeneous genomic landscape. 
    more » « less
  4. Abstract Ecological diversity in fungi is largely defined by metabolic traits, including the ability to produce secondary or “specialized” metabolites (SMs) that mediate interactions with other organisms. Fungal SM pathways are frequently encoded in biosynthetic gene clusters (BGCs), which facilitate the identification and characterization of metabolic pathways. Variation in BGC composition reflects the diversity of their SM products. Recent studies have documented surprising diversity of BGC repertoires among isolates of the same fungal species, yet little is known about how this population-level variation is inherited across macroevolutionary timescales. Here, we applied a novel linkage-based algorithm to reveal previously unexplored dimensions of diversity in BGC composition, distribution, and repertoire across 101 species of Dothideomycetes, which are considered the most phylogenetically diverse class of fungi and known to produce many SMs. We predicted both complementary and overlapping sets of clustered genes compared with existing methods and identified novel gene pairs that associate with known secondary metabolite genes. We found that variation among sets of BGCs in individual genomes is due to nonoverlapping BGC combinations and that several BGCs have biased ecological distributions, consistent with niche-specific selection. We observed that total BGC diversity scales linearly with increasing repertoire size, suggesting that secondary metabolites have little structural redundancy in individual fungi. We project that there is substantial unsampled BGC diversity across specific families of Dothideomycetes, which will provide a roadmap for future sampling efforts. Our approach and findings lend new insight into how BGC diversity is generated and maintained across an entire fungal taxonomic class. 
    more » « less
  5. Abstract Background Halogenation is a recurring feature in natural products, especially those from marine organisms. The selectivity with which halogenating enzymes act on their substrates renders halogenases interesting targets for biocatalyst development. Recently, CylC – the first predicted dimetal-carboxylate halogenase to be characterized – was shown to regio- and stereoselectively install a chlorine atom onto an unactivated carbon center during cylindrocyclophane biosynthesis. Homologs of CylC are also found in other characterized cyanobacterial secondary metabolite biosynthetic gene clusters. Due to its novelty in biological catalysis, selectivity and ability to perform C-H activation, this halogenase class is of considerable fundamental and applied interest. The study of CylC-like enzymes will provide insights into substrate scope, mechanism and catalytic partners, and will also enable engineering these biocatalysts for similar or additional C-H activating functions. Still, little is known regarding the diversity and distribution of these enzymes. Results In this study, we used both genome mining and PCR-based screening to explore the genetic diversity of CylC homologs and their distribution in bacteria. While we found non-cyanobacterial homologs of these enzymes to be rare, we identified a large number of genes encoding CylC-like enzymes in publicly available cyanobacterial genomes and in our in-house culture collection of cyanobacteria. Genes encoding CylC homologs are widely distributed throughout the cyanobacterial tree of life, within biosynthetic gene clusters of distinct architectures (combination of unique gene groups). These enzymes are found in a variety of biosynthetic contexts, which include fatty-acid activating enzymes, type I or type III polyketide synthases, dialkylresorcinol-generating enzymes, monooxygenases or Rieske proteins. Our study also reveals that dimetal-carboxylate halogenases are among the most abundant types of halogenating enzymes in the phylum Cyanobacteria. Conclusions Our data show that dimetal-carboxylate halogenases are widely distributed throughout the Cyanobacteria phylum and that BGCs encoding CylC homologs are diverse and mostly uncharacterized. This work will help guide the search for new halogenating biocatalysts and natural product scaffolds. 
    more » « less