Controlling the structure and reactivity of the chain-end group is a central objective in modern polymer chemistry. Here, we introduce 3,6-anhydrogalactal as a single-addition monomer that enables efficient and versatile chain-end functionalization of metathesis polymers. Readily synthesized from biomass-derived galactal, 3,6-anhydrogalactal exhibits excellent single-addition reactivity, allowing precise chain-end modifications even when introduced simultaneously with the propagating monomer. Theoretical calculations provide mechanistic insights into the unique reactivities governing its single-addition behavior. Its broad functional group compatibility facilitates diverse applications, including block copolymer synthesis, polymer-polymer coupling, and bioconjugation, demonstrating significant potential for advancing polymer materials and bioconjugation strategies.
more »
« less
Chemoselective bioconjugation based on modular click chemistry with 4-halocoumarins and aryl sulfonates
We report chemoselective and modular peptide bioconjugation using stoichiometric amounts of 4-halocoumarin and arylsulfonate agents that undergo metal-free C(sp 2 )-heteroatom bond formation at micromolar concentrations. The underlying ipso -substitution click chemistry is irreversible and generates stable and inherently fluorescent bioconjugates, and the broad selection of coumarin tags offers high labeling flexibility and versatility. Different coumarins and arylsulfonates can be selectively attached to amino and thiol groups in the small peptides glutathione and ornipressin, and both free as well as latent thiols captured in disulfide bridges can be targeted if desired. The broad utility, ease of use, storage, and preparation of 4-halocoumarins and arylsulfonates are very attractive features that extend currently available dual bioconjugation capabilities.
more »
« less
- Award ID(s):
- 1764135
- PAR ID:
- 10233077
- Date Published:
- Journal Name:
- RSC Advances
- Volume:
- 11
- Issue:
- 31
- ISSN:
- 2046-2069
- Page Range / eLocation ID:
- 18960 to 18965
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Tobacco mosaic virus (TMV) was the first virus to be discovered and it is now widely used as a tool for biological research and biotechnology applications. TMV particles can be decorated with functional molecules by genetic engineering or bioconjugation. However, this can destabilize the nanoparticles, and/or multiple rounds of modification may be necessary, reducing product yields and preventing the display of certain cargo molecules. To overcome these challenges, we used phage display technology and biopanning to isolate a TMV‐binding peptide (TBPT25) with strong binding properties (IC50=0.73 μM, KD=0.16 μM), allowing the display of model cargos via a single mixing step. The TMV‐binding peptide is specific for TMV but does not recognize free coat proteins and can therefore be used to decorate intact TMV or detect intact TMV particles in crude plant sap.more » « less
-
Selective modification of proteins enables synthesis of antibody-drug conjugates, cellular drug delivery and construction of new materials. Many groups have developed methods for selective N-terminal modification without affecting the side chain of lysine by judicious pH control. This is due to lower basicity of the N-terminus relative to lysine side chains. But none of the methods are capable of selective modification of secondary amines or N-terminal proline, which has similar basicity as lysine. Here, we report a secondary amine selective Petasis (SASP) reaction for selective bioconjugation at N-terminal proline. We exploited the ability of secondary amines to form highly electrophilic iminium ions with aldehydes, which rapidly reacted with nucleophilic organoboronates, resulting in robust labeling of N-terminal proline under biocompatible conditions. This is the first time the Petasis reaction has been utilized for selective modification of secondary amines on completely unprotected peptides and proteins under physiological conditions. Peptide screening results showed that the reaction is highly selective for N-terminal proline. There are no other chemical methods reported in literature that are selective for N-terminal proline in both peptides and proteins. This is a multicomponent reaction leading to the synthesis of doubly functionalized bioconjugates in one step that can be difficult to achieve using other methods. The key advantage of the SASP reaction includes its high chemoselective and stereoselective (>99% de) nature, and it affords dual labeled proteins in one pot. The broad utility of this bioconjugation is highlighted for a variety of peptides and proteins, including aldolase and creatine kinase.more » « less
-
Abstract Nitroalkanes react specifically with aldehydes, providing rapid, stable, and chemoselective protein bioconjugation. These nitroalkylated proteins mimic key post‐translational modifications (PTMs) of proteins and can be used to understand the role of these PTMs in cellular processes. Demonstrated here is the substrate scope of this bioconjugation by attaching a variety of tags, such as NMR tags, fluorescent tags, affinity tags, and alkyne tags, to proteins. The structure and enzymatic activity of modified proteins remain conserved after labeling. Notably, the nitroalkane group leads to easy characterization of proteins by mass spectrometry because of its distinct fingerprint pattern. Importantly, the nitro‐alkylated peptides provide a new handle for site‐selective fluorination of peptides, thus installing a specific probe to study peptide–protein interactions by19F NMR spectroscopy. Furthermore, nitroalkane reagents can be used for the late‐stage diversification of peptides and for the synthesis of peptide staples.more » « less
-
Abstract Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody‐drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.more » « less
An official website of the United States government

