skip to main content


Title: Previously uncharacterized interactions between the folded and intrinsically disordered domains impart asymmetric effects on UBQLN2 phase separation
Abstract

Shuttle protein UBQLN2 functions in protein quality control (PQC) by binding to proteasomal receptors and ubiquitinated substrates via its N‐terminal ubiquitin‐like (UBL) and C‐terminal ubiquitin‐associated (UBA) domains, respectively. Between these two folded domains are low‐complexity STI1‐I and STI1‐II regions, connected by disordered linkers. The STI1 regions bind other components, such as HSP70, that are important to the PQC functions of UBQLN2. We recently determined that the STI1‐II region enables UBQLN2 to undergo liquid–liquid phase separation (LLPS) to form liquid droplets in vitro and biomolecular condensates in cells. However, how the interplay between the folded (UBL/UBA) domains and the intrinsically disordered regions mediates phase separation is largely unknown. Using engineered domain deletion constructs, we found that removing the UBA domain inhibits UBQLN2 LLPS while removing the UBL domain enhances LLPS, suggesting that UBA and UBL domains contribute asymmetrically in modulating UBQLN2 LLPS. To explain these differential effects, we interrogated the interactions that involve the UBA and UBL domains across the entire UBQLN2 molecule using nuclear magnetic resonance spectroscopy. To our surprise, aside from well‐studied canonical UBL:UBA interactions, there also exist moderate interactions between the UBL and several disordered regions, including STI1‐I and residues 555–570, the latter of which is a known contributor to UBQLN2 LLPS. Our findings are essential for the understanding of both the molecular driving forces of UBQLN2 LLPS and the effects of ligand binding to UBL, UBA, or disordered regions on the phase behavior and physiological functions of UBQLN2.

 
more » « less
Award ID(s):
1750462
NSF-PAR ID:
10450935
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Protein Science
Volume:
30
Issue:
7
ISSN:
0961-8368
Page Range / eLocation ID:
p. 1467-1481
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Liquid‐liquid phase separation (LLPS) has recently emerged as a possible mechanism that enables ubiquitin‐binding shuttle proteins to facilitate the degradation of ubiquitinated substrates via distinct protein quality control (PQC) pathways. Shuttle protein LLPS is modulated by multivalent interactions among their various domains as well as heterotypic interactions with polyubiquitin chains. Here, the properties of three different shuttle proteins (hHR23B, p62, and UBQLN2) are closely examined, unifying principles for the molecular determinants of their LLPS are identified, and how LLPS is connected to their functions is discussed. Evidence supporting LLPS of other shuttle proteins is also found. In this review, it is proposed that shuttle protein LLPS leads to spatiotemporal regulation of PQC activities by mediating the recruitment of PQC machinery (including proteasomes or autophagic components) to biomolecular condensates, assembly/disassembly of condensates, selective enrichment of client proteins, and extraction of ubiquitinated proteins from condensates in cells.

     
    more » « less
  2. Abstract

    Targeting protein for Xklp2 (TPX2) is a key factor that stimulates branching microtubule nucleation during cell division. Upon binding to microtubules (MTs), TPX2 forms condensates via liquid-liquid phase separation, which facilitates recruitment of microtubule nucleation factors and tubulin. We report the structure of the TPX2 C-terminal minimal active domain (TPX2α5-α7) on the microtubule lattice determined by magic-angle-spinning NMR. We demonstrate that TPX2α5-α7forms a co-condensate with soluble tubulin on microtubules and binds to MTs between two adjacent protofilaments and at the intersection of four tubulin heterodimers. These interactions stabilize the microtubules and promote the recruitment of tubulin. Our results reveal that TPX2α5-α7is disordered in solution and adopts a folded structure on MTs, indicating that TPX2α5-α7undergoes structural changes from unfolded to folded states upon binding to microtubules. The aromatic residues form dense interactions in the core, which stabilize folding of TPX2α5-α7on microtubules. This work informs on how the phase-separated TPX2α5-α7behaves on microtubules and represents an atomic-level structural characterization of a protein that is involved in a condensate on cytoskeletal filaments.

     
    more » « less
  3. We have investigated the structural evolution in solutions of the intrinsically disordered protein, α-synuclein, as a function of protein concentration and added salt concentration. Accounting for electrostatic and excluded volume interactions based on the protein sequence, our Langevin dynamics simulations reveal that α-synuclein molecules assemble into aggregates and percolated structures with a spontaneous selection of a dominant structure characteristic of microphase separation. This microphase assembly is mainly driven by electrostatic interactions between the residues in N-terminal and C-terminal of the protein molecules, and presence of salt loosens the compactness of the microstructures. We have quantified the features of the spontaneously formed microstructures using interchain radial distribution functions, and experimentally measurable inter-residue contact maps and static structure factors. Our results are in contrast to the commonly hypothesized mechanism of liquid–liquid phase separation (LLPS) for the formation of droplets in solutions of intrinsically disordered proteins, opening a new paradigm to understand the birth and structure of membraneless organelles. In general, construction of phase diagrams of intrinsically disordered proteins and other biomacromolecular systems needs to incorporate features of microphase separation into other mechanisms of macrophase separation and percolation. 
    more » « less
  4. Abstract

    Synaptotagmin (syt) 1, a Ca2+sensor for synaptic vesicle exocytosis, functions in vivo as a multimer. Syt1 senses Ca2+via tandem C2-domains that are connected to a single transmembrane domain via a juxtamembrane linker. Here, we show that this linker segment harbors a lysine-rich, intrinsically disordered region that is necessary and sufficient to mediate liquid-liquid phase separation (LLPS). Interestingly, condensate formation negatively regulates the Ca2+-sensitivity of syt1. Moreover, Ca2+and anionic phospholipids facilitate the observed phase separation, and increases in [Ca2+]ipromote the fusion of syt1 droplets in living cells. Together, these observations suggest a condensate-mediated feedback loop that serves to fine-tune the ability of syt1 to trigger release, via alterations in Ca2+binding activity and potentially through the impact of LLPS on membrane curvature during fusion reactions. In summary, the juxtamembrane linker of syt1 emerges as a regulator of syt1 function by driving self-association via LLPS.

     
    more » « less
  5. Abstract

    The SARS-CoV-2 nucleocapsid (N) protein is an abundant RNA-binding protein critical for viral genome packaging, yet the molecular details that underlie this process are poorly understood. Here we combine single-molecule spectroscopy with all-atom simulations to uncover the molecular details that contribute to N protein function. N protein contains three dynamic disordered regions that house putative transiently-helical binding motifs. The two folded domains interact minimally such that full-length N protein is a flexible and multivalent RNA-binding protein. N protein also undergoes liquid-liquid phase separation when mixed with RNA, and polymer theory predicts that the same multivalent interactions that drive phase separation also engender RNA compaction. We offer a simple symmetry-breaking model that provides a plausible route through which single-genome condensation preferentially occurs over phase separation, suggesting that phase separation offers a convenient macroscopic readout of a key nanoscopic interaction.

     
    more » « less