skip to main content


Title: “Soft” oxidative coupling of methane to ethylene: Mechanistic insights from combined experiment and theory

The oxidative coupling of methane to ethylene using gaseous disulfur (2CH4+ S2→ C2H4+ 2H2S) as an oxidant (SOCM) proceeds with promising selectivity. Here, we report detailed experimental and theoretical studies that examine the mechanism for the conversion of CH4to C2H4over an Fe3O4-derived FeS2catalyst achieving a promising ethylene selectivity of 33%. We compare and contrast these results with those for the highly exothermic oxidative coupling of methane (OCM) using O2(2CH4+ O2→ C2H4+ 2H2O). SOCM kinetic/mechanistic analysis, along with density functional theory results, indicate that ethylene is produced as a primary product of methane activation, proceeding predominantly via CH2coupling over dimeric S–S moieties that bridge Fe surface sites, and to a lesser degree, on heavily sulfided mononuclear sites. In contrast to and unlike OCM, the overoxidized CS2by-product forms predominantly via CH4oxidation, rather than from C2products, through a series of C–H activation and S-addition steps at adsorbed sulfur sites on the FeS2surface. The experimental rates for methane conversion are first order in both CH4and S2, consistent with the involvement of two S sites in the rate-determining methane C–H activation step, with a CD4/CH4kinetic isotope effect of 1.78. The experimental apparent activation energy for methane conversion is 66 ± 8 kJ/mol, significantly lower than for CH4oxidative coupling with O2. The computed methane activation barrier, rate orders, and kinetic isotope values are consistent with experiment. All evidence indicates that SOCM proceeds via a very different pathway than that of OCM.

 
more » « less
Award ID(s):
1647722
NSF-PAR ID:
10233290
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
23
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2012666118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Direct conversion of methane into ethylene through the oxidative coupling of methane (OCM) is a technically important reaction. However, conventional co-fed fixed-bed OCM reactors still face serious challenges in conversion and selectivity. In this paper, we apply a finite element model to simulate OCM reaction in a plug-flow CO2/O2transport membrane (CTM) reactor with a directly captured CO2and O2mixture as a soft oxidizer. The CTM is made of three phases: molten carbonate, 20% Sm-doped CeO2, and LiNiO2. The membrane parameters are first validated by CO2/O2flux data obtained from CTM experiments. The OCM reaction is then simulated along the length of tubular plug-flow reactors filled with a La2O3-CaO-modified CeO2catalyst bed, while a mixture of CO2/O2is gradually added through the wall of the tubular membrane. A 12-step OCM kinetic mechanism is considered in the model for the catalyst bed and validated by data obtained from a co-fed fixed-bed reactor. The modeled results indicate a much-improved OCM performance by membrane reactor in terms of C2-yield and CH4conversion rate over the state-of-the-art, co-fed, fixed-bed reactor. The model further reveals that improved performance is fundamentally rooted in the gradual methane conversion with CO2/O2offered by the plug-flow membrane reactor.

     
    more » « less
  2. Abstract

    The complex structure of the catalytic active phase, and surface‐gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2WO4/SiO2catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2‐TPR, TAP and steady‐state kinetics) experiments, that the long speculated crystalline Na2WO4active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na‐WOxsites. Kinetic analysis via temporal analysis of products (TAP) and steady‐state OCM reaction studies demonstrate that (i) surface Na‐WOxsites are responsible for selectively activating CH4to C2Hxand over‐oxidizing CHyto CO and (ii) molten Na2WO4phase is mainly responsible for over‐oxidation of CH4to CO2and also assists in oxidative dehydrogenation of C2H6to C2H4. These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2WO4/SiO2catalysts.

     
    more » « less
  3. Abstract

    The complex structure of the catalytic active phase, and surface‐gas reaction networks have hindered understanding of the oxidative coupling of methane (OCM) reaction mechanism by supported Na2WO4/SiO2catalysts. The present study demonstrates, with the aid of in situ Raman spectroscopy and chemical probe (H2‐TPR, TAP and steady‐state kinetics) experiments, that the long speculated crystalline Na2WO4active phase is unstable and melts under OCM reaction conditions, partially transforming to thermally stable surface Na‐WOxsites. Kinetic analysis via temporal analysis of products (TAP) and steady‐state OCM reaction studies demonstrate that (i) surface Na‐WOxsites are responsible for selectively activating CH4to C2Hxand over‐oxidizing CHyto CO and (ii) molten Na2WO4phase is mainly responsible for over‐oxidation of CH4to CO2and also assists in oxidative dehydrogenation of C2H6to C2H4. These new insights reveal the nature of catalytic active sites and resolve the OCM reaction mechanism over supported Na2WO4/SiO2catalysts.

     
    more » « less
  4. Abstract

    Efficient conversion of methane to value-added products such as olefins and aromatics has been in pursuit for the past few decades. The demand has increased further due to the recent discoveries of shale gas reserves. Oxidative and non-oxidative coupling of methane (OCM and NOCM) have been actively researched, although catalysts with commercially viable conversion rates are not yet available. Recently,$${{{{{{{\mathrm{Sr}}}}}}}}_2Fe_{1.5 + 0.075}Mo_{0.5}O_{6 - \delta }$$Sr2Fe1.5+0.075Mo0.5O6δ(SFMO-075Fe) has been reported to activate methane in an electrochemical OCM (EC-OCM) set up with a C2 selectivity of 82.2%1. However, alkaline earth metal-based materials are known to suffer chemical instability in carbon-rich environments. Hence, here we evaluated the chemical stability of SFMO in carbon-rich conditions with varying oxygen concentrations at temperatures relevant for EC-OCM. SFMO-075Fe showed good methane activation properties especially at low overpotentials but suffered poor chemical stability as observed via thermogravimetric, powder XRD, and XPS measurements where SrCO3was observed to be a major decomposition product along with SrMoO3and MoC. Nevertheless, our study demonstrates that electrochemical methods could be used to selectively activate methane towards partial oxidation products such as ethylene at low overpotentials while higher applied biases result in the complete oxidation of methane to carbon dioxide and water.

     
    more » « less
  5. The molecular and electronic structures and chemical properties of the active sites on the surface of supported Na 2 WO 4 /SiO 2 catalysts used for oxidative coupling of methane (OCM) are poorly understood. Model SiO 2 -supported, Na-promoted tungsten oxide catalysts (Na–WO x /SiO 2 ) were systematically prepared using various Na- and W-precursors using carefully controlled Na/W molar ratios and examined with in situ Raman, UV-vis DR, CO 2 -TPD-DRIFT and NH 3 -TPD-DRIFT spectroscopies. The traditionally-prepared catalysts corresponding to 5% Na 2 WO 4 nominal loading, with Na/W molar ratio of 2, were synthesized from the aqueous Na 2 WO 4 ·2H 2 O precursor. After calcination at 800 °C, the initially amorphous SiO 2 support crystallized to the cristobalite phase and the supported sodium tungstate phase consisted of both crystalline Na 2 WO 4 nanoparticles (Na/W = 2) and dispersed phase Na–WO 4 surface sites (Na/W < 2). On the other hand, the catalysts prepared via a modified impregnation method using individual precursors of NaOH + AMT, such that the Na/W molar ratio remained well below 2, resulted in: (i) SiO 2 remaining amorphous (ii) only dispersed phase Na–WO 4 surface sites. The dispersed Na–WO 4 surface sites were isolated, more geometrically distorted, less basic in nature, and more reducible than the crystalline Na 2 WO 4 nanoparticles. The CH 4 + O 2 -TPSR results reveal that the isolated, dispersed phase Na–WO 4 surface sites were significantly more C 2 selective, but slightly less active than the traditionally-prepared catalysts that contain crystalline Na 2 WO 4 nanoparticles (Na/W = 2). These findings demonstrate that the isolated, dispersed phase Na–WO 4 sites on the SiO 2 support surface are the selective-active sites for the OCM reaction. 
    more » « less