skip to main content


Title: Neurophysiological coordination of duet singing

Coordination of behavior for cooperative performances often relies on linkages mediated by sensory cues exchanged between participants. How neurophysiological responses to sensory information affect motor programs to coordinate behavior between individuals is not known. We investigated how plain-tailed wrens (Pheugopedius euophrys) use acoustic feedback to coordinate extraordinary duet performances in which females and males rapidly take turns singing. We made simultaneous neurophysiological recordings in a song control area “HVC” in pairs of singing wrens at a field site in Ecuador. HVC is a premotor area that integrates auditory feedback and is necessary for song production. We found that spiking activity of HVC neurons in each sex increased for production of its own syllables. In contrast, hearing sensory feedback produced by the bird’s partner decreased HVC activity during duet singing, potentially coordinating HVC premotor activity in each bird through inhibition. When birds sang alone, HVC neurons in females but not males were inhibited by hearing the partner bird. When birds were anesthetized with urethane, which antagonizes GABAergic (γ-aminobutyric acid) transmission, HVC neurons were excited rather than inhibited, suggesting a role for GABA in the coordination of duet singing. These data suggest that HVC integrates information across partners during duets and that rapid turn taking may be mediated, in part, by inhibition.

 
more » « less
NSF-PAR ID:
10233302
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Proceedings of the National Academy of Sciences
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
118
Issue:
23
ISSN:
0027-8424
Page Range / eLocation ID:
Article No. e2018188118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Adult female zebra finches (Taeniopygia guttata), which do not produce learned songs, have long been thought to possess only vestiges of the forebrain network that supports learned song in males. This view ostensibly explains why females do not sing—many of the neural populations and pathways that make up the male song control network appear rudimentary or even missing in females. For example, classic studies of vocal‐premotor cortex (HVC, acronym is name) in male zebra finches identified prominent efferent pathways from HVC to vocal‐motor cortex (RA, robust nucleus of the arcopallium) and from HVC to the avian basal ganglia (Area X). In females, by comparison, the efferent targets of HVC were thought to be only partially innervated by HVC axons (RA) or absent (Area X). Here, using a novel visually guided surgical approach to target tracer injections with precision, we mapped the extrinsic connectivity of the adult female HVC. We find that female HVC shows a mostly male‐typical pattern of afferent and efferent connectivity, including robust HVC innervation of RA and Area X. As noted by earlier investigators, we find large sex differences in the volume of many regions that control male singing (male > female). However, sex differences in volume were diminished in regions that convey ascending afferent input to HVC. Our findings do not support a vestigial interpretation of the song control network in females. Instead, our findings support the emerging view that the song control network may have an altogether different function in nonsinging females.

     
    more » « less
  2. Song learning in zebra finches (Taeniopygia guttata) requires exposure to the song of a tutor, resulting in an auditory memory. This memory is the foundation for later sensorimotor learning, resulting in the production of a copy of the tutor's song. The cortical premotor nucleus HVC (proper name) is necessary for auditory and sensorimotor learning as well as the eventual production of adult song. We recently discovered that the intrinsic physiology of HVC neurons changes across stages of song learning, but are those changes the result of learning or are they experience-independent developmental changes? To test the role of auditory experience in driving intrinsic changes, patch-clamp experiments were performed comparing HVC neurons in juvenile birds with varying amounts of tutor exposure. The intrinsic physiology of HVC neurons changed as a function of tutor exposure. Counterintuitively, tutor deprivation resulted in juvenile HVC neurons showing an adult-like phenotype not present in tutor-exposed juveniles. Biophysical models were developed to predict which ion channels were modulated by experience. The models indicate that tutor exposure transiently suppressed the Ih and T-type Ca2+ currents in HVC neurons that target the basal ganglia, whereas tutor exposure increased the resting membrane potential and decreased the spike amplitude in HVC neurons that drive singing. Our findings suggest that intrinsic plasticity may be part of the mechanism for auditory learning in the HVC. More broadly, models of learning and memory should consider intrinsic plasticity as a possible mechanism by which the nervous system encodes the lasting effects of experience. 
    more » « less
  3. Abstract

    Selective logging is the primary cause of tropical forest degradation and is rapidly expanding worldwide. While the impacts of logging on species diversity and distributions are well understood, little is known about the effects of logging on animal behaviours central to individual fitness and population persistence.

    The song rate of breeding songbirds is a behavioural trait that is often positively associated with male density and used by conspecific females as an indicator of territory and male quality. Thus, contrasting logging‐induced adjustments in song rates of individual birds with population shifts may illuminate potential mechanisms underlying population distributions.

    We present a novel application of bioacoustic monitoring, integrating counts of individuals, songs and duets from single automated recording units (ARUs) withN‐mixture models, to estimate shifts in population parameters (occupancy, abundance) and singing behaviours (per‐capita song rates, per‐pair duet rates) of 32 Bornean songbird species with logging. We tested hypotheses on the relationships between adjustments in behavioural and population parameters with logging, and further tested the extent to which species traits predicted behavioural and population shifts.

    Adjustments to singing behaviour in 59 and 53% of species (57% of duetting species) were concordant with differences in occupancy and abundance respectively, such that species showing reduced populations with logging also produced fewer songs per‐capita, and vice versa. Species known to prefer undisturbed habitats and large‐bodied species showed the most negative effects of logging on singing behaviour and population distributions. Species known to exploit degraded habitats exhibited the opposite pattern. Subdued singing in logged forests by species of conservation concern suggests limited competition between territorial males in small populations and may also signal low‐quality territories.

    Synthesis and applications. We demonstrate that bioacoustic monitoring can be used to not only estimate important population parameters of occupancy and abundance across a diverse tropical songbird community, but also enables quantification of behaviours considered relevant to individual fitness, yet unobtainable with conventional methods (e.g. point counts). Bioacoustics provides a viable approach to reliable automated large‐scale monitoring of hyperdiverse tropical forest systems under logging operations and other land‐use pressures.

     
    more » « less
  4. Abstract

    Vocal signals mediate social relationships, and among networks of territorial animals, information is often shared via broadcast vocalizations. Anthropogenic noise may disrupt communication among individuals within networks, as animals change the way they vocalize in noise. Furthermore, constraints on signal transmission, including frequency masking and distance, may affect information exchange following a disruption in social networks. We tested the hypothesis that signaling interactions within networks of breeding male and female house wrens (Troglodytes aedon) depend on distance, ambient noise, and receiver nesting stage. We used playback experiments to simulate territorial intrusions with and without noise playbacks on the territories of established males and simultaneously recorded the vocal responses of neighbors. To examine whether intrusions impacted interactions between males, we used randomization tests to determine whether treatment, distance, noise, or nesting stage affected vocal coordination between challenged and neighboring males. We also quantified singing patterns to explore whether intrusions on territories of challenged males affected singing by males and females on neighboring territories. Males sang at the lowest rates and were less likely to overlap songs with the challenged male when their partner was laying, compared to males during early and late nesting stages. Noise and distance did not affect vocal coordination or male singing rates. Fewer females sang during the intruder‐only treatment compared to the control and intrusions with noise. Added noise in the territories of challenged males may have masked signals, and as a result, females only changed their behavior during the intruder‐only treatment. Our results suggest that the fertility of breeding partners may be more important to males than short‐term changes on rival male territories. Elevated noise did little to alter male responses to threats within networks. Females appeared to eavesdrop on interactions involving neighboring males, but noise may have prevented detection of their interactions.

     
    more » « less
  5. Many social animals can recognize other individuals by their vocalizations. This requires a memory system capable of mapping incoming acoustic signals to one of many known individuals. Using the zebra finch, a social songbird that uses songs and distance calls to communicate individual identity (Elie and Theunissen, 2018), we tested the role of two cortical-like brain regions in a vocal recognition task. We found that the rostral region of the Cadomedial Nidopallium (NCM), a secondary auditory region of the avian pallium, was necessary for maintaining auditory memories for conspecific vocalizations in both male and female birds, whereas HVC (used as a proper name), a premotor areas that gates auditory input into the vocal motor and song learning pathways in male birds (Roberts and Mooney, 2013), was not. Both NCM and HVC have previously been implicated for processing the tutor song in the context of song learning (Sakata and Yazaki-Sugiyama, 2020). Our results suggest that NCM might not only store songs as templates for future vocal imitation but also songs and calls for perceptual discrimination of vocalizers in both male and female birds. NCM could therefore operate as a site for auditory memories for vocalizations used in various facets of communication. We also observed that new auditory memories could be acquired without intact HVC or NCM but that for these new memories NCM lesions caused deficits in either memory capacity or auditory discrimination. These results suggest that the high-capacity memory functions of the avian pallial auditory system depend on NCM.

    SIGNIFICANCE STATEMENTMany aspects of vocal communication require the formation of auditory memories. Voice recognition, for example, requires a memory for vocalizers to identify acoustical features. In both birds and primates, the locus and neural correlates of these high-level memories remain poorly described. Previous work suggests that this memory formation is mediated by high-level sensory areas, not traditional memory areas such as the hippocampus. Using lesion experiments, we show that one secondary auditory brain region in songbirds that had previously been implicated in storing song memories for vocal imitation is also implicated in storing vocal memories for individual recognition. The role of the neural circuits in this region in interpreting the meaning of communication calls should be investigated in the future.

     
    more » « less