Title: Is it Easier to Prove Theorems that are Guaranteed to be True?
Consider the following two fundamental open problems in complexity theory: • Does a hard-on-average language in NP imply the existence of one-way functions? • Does a hard-on-average language in NP imply a hard-on-average problem in TFNP (i.e., the class of total NP search problem)? Our main result is that the answer to (at least) one of these questions is yes. Both one-way functions and problems in TFNP can be interpreted as promise-true distributional NP search problems—namely, distributional search problems where the sampler only samples true statements. As a direct corollary of the above result, we thus get that the existence of a hard-on-average distributional NP search problem implies a hard-on-average promise-true distributional NP search problem. In other words, It is no easier to find witnesses (a.k.a. proofs) for efficiently-sampled statements (theorems) that are guaranteed to be true. This result follows from a more general study of interactive puzzles—a generalization of average-case hardness in NP—and in particular, a novel round-collapse theorem for computationallysound protocols, analogous to Babai-Moran’s celebrated round-collapse theorem for informationtheoretically sound protocols. As another consequence of this treatment, we show that the existence of O(1)-round public-coin non-trivial arguments (i.e., argument systems that are not proofs) imply the existence of a hard-on-average problem in NP/poly. more »« less
Pass, R.; Venkitasubramaniam, M.
(, ACM SIGACT News)
null
(Ed.)
We review a study of average-case complexity through the lens of interactive puzzles- interactive games between a computationally bounded Challenger and computationally-bounded Solver/Attacker. Most notably, we use this treatment to review a recent result showing that if NP is hard-on-the-average, then there exists a sampleable distribution over only true statements of an NP language, for which no probabilistic polynomial time algorithm can find witnesses. We also discuss connections to the problem of whether average-case hardness in NP implies averagecase hardness in TFNP, or the existence of cryptographic one-way functions.
LaVigne, R.; Lincoln, A.; Vassilevska Williams, V.
(, Advances in Cryptology {\textendash} {CRYPTO} 2019)
Cryptography is largely based on unproven assumptions, which, while believable, might fail. Notably if P=NP, or if we live in Pessiland, then all current cryptographic assumptions will be broken. A compelling question is if any interesting cryptography might exist in Pessiland. A natural approach to tackle this question is to base cryptography on an assumption from fine-grained complexity. Ball, Rosen, Sabin, and Vasudevan [BRSV’17] attempted this, starting from popular hardness assumptions, such as the Orthogonal Vectors (OV) Conjecture. They obtained problems that are hard on average, assuming that OV and other problems are hard in the worst case. They obtained proofs of work, and hoped to use their average-case hard problems to build a fine-grained one-way function. Unfortunately, they proved that constructing one using their approach would violate a popular hardness hypothesis. This motivates the search for other fine-grained average-case hard problems. The main goal of this paper is to identify sufficient properties for a fine-grained average-case assumption that imply cryptographic primitives such as fine-grained public key cryptography (PKC). Our main contribution is a novel construction of a cryptographic key exchange, together with the definition of a small number of relatively weak structural properties, such that if a computational problem satisfies them, our key exchange has provable fine-grained security guarantees, based on the hardness of this problem. We then show that a natural and plausible average-case assumption for the key problem Zero-k-Clique from fine-grained complexity satisfies our properties. We also develop fine-grained one-way functions and hardcore bits even under these weaker assumptions. Where previous works had to assume random oracles or the existence of strong one-way functions to get a key-exchange computable in O(n) time secure against O(n^2) time adversaries (see [Merkle’78] and [BGI’08]), our assumptions seem much weaker. Our key exchange has a similar gap between the computation of the honest party and the adversary as prior work, while being non-interactive, implying fine-grained PKC.
Kol, Gillat; Oshman, Rotem; Saxena, Raghuvansh.
(, ACM Symposium on Principles of Distributed Computing)
Interactive proof systems allow a resource-bounded verifier to decide an intractable language (or compute a hard function) by communicating with a powerful but untrusted prover. Such systems guarantee that the prover can only convince the verifier of true statements. In the context of centralized computation, a celebrated result shows that interactive proofs are extremely powerful, allowing polynomial-time verifiers to decide any language in PSPACE. In this work we initiate the study of interactive distributed proofs: a network of nodes interacts with a single untrusted prover, who sees the entire network graph, to decide whether the graph satisfies some property. We focus on the communication cost of the protocol — the number of bits the nodes must exchange with the prover and each other. Our model can also be viewed as a generalization of the various models of “distributed NP” (proof labeling schemes, etc.) which received significant attention recently: while these models only allow the prover to present each network node with a string of advice, our model allows for back-and-forth interaction. We prove both upper and lower bounds for the new model. We show that for some problems, interaction can exponentially decrease the communication cost compared to a non-interactive prover, but on the other hand, some problems retain non-trivial cost even with interaction.
van Melkebeek, Dieter; Mocelin Sdroievski, Nicollas
(, Proceedings of the 38th Computational Complexity Conference (CCC 2023))
Ta-Shma, Amnon
(Ed.)
A fundamental question in computational complexity asks whether probabilistic polynomial-time algorithms can be simulated deterministically with a small overhead in time (the BPP vs. P problem). A corresponding question in the realm of interactive proofs asks whether Arthur-Merlin protocols can be simulated nondeterministically with a small overhead in time (the AM vs. NP problem). Both questions are intricately tied to lower bounds. Prominently, in both settings blackbox derandomization, i.e., derandomization through pseudo-random generators, has been shown equivalent to lower bounds for decision problems against circuits. Recently, Chen and Tell (FOCS'21) established near-equivalences in the BPP setting between whitebox derandomization and lower bounds for multi-bit functions against algorithms on almost-all inputs. The key ingredient is a technique to translate hardness into targeted hitting sets in an instance-wise fashion based on a layered arithmetization of the evaluation of a uniform circuit computing the hard function f on the given instance. In this paper we develop a corresponding technique for Arthur-Merlin protocols and establish similar near-equivalences in the AM setting. As an example of our results in the hardness to derandomization direction, consider a length-preserving function f computable by a nondeterministic algorithm that runs in time n^a. We show that if every Arthur-Merlin protocol that runs in time n^c for c = O(log² a) can only compute f correctly on finitely many inputs, then AM is in NP. Our main technical contribution is the construction of suitable targeted hitting-set generators based on probabilistically checkable proofs for nondeterministic computations. As a byproduct of our constructions, we obtain the first result indicating that whitebox derandomization of AM may be equivalent to the existence of targeted hitting-set generators for AM, an issue raised by Goldreich (LNCS, 2011). Byproducts in the average-case setting include the first uniform hardness vs. randomness tradeoffs for AM, as well as an unconditional mild derandomization result for AM.
A fundamental pursuit in complexity theory concerns reducing worst-case problems to average-case problems. There exist complexity classes such as PSPACE that admit worst-case to average-case reductions. However, for many other classes such as NP, the evidence so far is typically negative, in the sense that the existence of such reductions would cause collapses of the polynomial hierarchy(PH). Basing cryptographic primitives, e.g., the average-case hardness of inverting one-way permutations, on NP-completeness is a particularly intriguing instance. As there is evidence showing that classical reductions from NP-hard problems to breaking these primitives result in PH collapses, it seems unlikely to base cryptographic primitives on NP-hard problems. Nevertheless, these results do not rule out the possibilities of the existence of quantum reductions. In this work, we initiate a study of the quantum analogues of these questions. Aside from formalizing basic notions of quantum reductions and demonstrating powers of quantum reductions by examples of separations, our main result shows that if NP-complete problems reduce to inverting one-way permutations using certain types of quantum reductions, then coNP ⊆ QIP ( 2 ) .
Pass, Rafael Pass, and Venkitasubramaniam, Muthuramakrishnan. Is it Easier to Prove Theorems that are Guaranteed to be True?. Retrieved from https://par.nsf.gov/biblio/10233401. IEEE Symposium on Foundations of Computer Science .
Pass, Rafael Pass, & Venkitasubramaniam, Muthuramakrishnan. Is it Easier to Prove Theorems that are Guaranteed to be True?. IEEE Symposium on Foundations of Computer Science, (). Retrieved from https://par.nsf.gov/biblio/10233401.
Pass, Rafael Pass, and Venkitasubramaniam, Muthuramakrishnan.
"Is it Easier to Prove Theorems that are Guaranteed to be True?". IEEE Symposium on Foundations of Computer Science (). Country unknown/Code not available. https://par.nsf.gov/biblio/10233401.
@article{osti_10233401,
place = {Country unknown/Code not available},
title = {Is it Easier to Prove Theorems that are Guaranteed to be True?},
url = {https://par.nsf.gov/biblio/10233401},
abstractNote = {Consider the following two fundamental open problems in complexity theory: • Does a hard-on-average language in NP imply the existence of one-way functions? • Does a hard-on-average language in NP imply a hard-on-average problem in TFNP (i.e., the class of total NP search problem)? Our main result is that the answer to (at least) one of these questions is yes. Both one-way functions and problems in TFNP can be interpreted as promise-true distributional NP search problems—namely, distributional search problems where the sampler only samples true statements. As a direct corollary of the above result, we thus get that the existence of a hard-on-average distributional NP search problem implies a hard-on-average promise-true distributional NP search problem. In other words, It is no easier to find witnesses (a.k.a. proofs) for efficiently-sampled statements (theorems) that are guaranteed to be true. This result follows from a more general study of interactive puzzles—a generalization of average-case hardness in NP—and in particular, a novel round-collapse theorem for computationallysound protocols, analogous to Babai-Moran’s celebrated round-collapse theorem for informationtheoretically sound protocols. As another consequence of this treatment, we show that the existence of O(1)-round public-coin non-trivial arguments (i.e., argument systems that are not proofs) imply the existence of a hard-on-average problem in NP/poly.},
journal = {IEEE Symposium on Foundations of Computer Science},
author = {Pass, Rafael Pass and Venkitasubramaniam, Muthuramakrishnan},
editor = {null}
}
Warning: Leaving National Science Foundation Website
You are now leaving the National Science Foundation website to go to a non-government website.
Website:
NSF takes no responsibility for and exercises no control over the views expressed or the accuracy of
the information contained on this site. Also be aware that NSF's privacy policy does not apply to this site.