Graves’ Disease is the most common organ-specific autoimmune disease and has been linked in small pilot studies to taxonomic markers within the gut microbiome. Important limitations of this work include small sample sizes and low-resolution taxonomic markers. Accordingly, we studied 162 gut microbiomes of mild and severe Graves’ disease (GD) patients and healthy controls. Taxonomic and functional analyses based on metagenome-assembled genomes (MAGs) and MAG-annotated genes, together with predicted metabolic functions and metabolite profiles, revealed a well-defined network of MAGs, genes and clinical indexes separating healthy from GD subjects. A supervised classification model identified a combination of biomarkers including microbial species, MAGs, genes and SNPs, with predictive power superior to models from any single biomarker type (AUC = 0.98). Global, cross-disease multi-cohort analysis of gut microbiomes revealed high specificity of these GD biomarkers, notably discriminating against Parkinson’s Disease, and suggesting that non-invasive stool-based diagnostics will be useful for these diseases.
- Award ID(s):
- 2038509
- Publication Date:
- NSF-PAR ID:
- 10233484
- Journal Name:
- The ISME Journal
- Volume:
- 15
- Issue:
- 11
- Page Range or eLocation-ID:
- p. 3399-3411
- ISSN:
- 1751-7362
- Publisher:
- Nature Publishing Group
- Sponsoring Org:
- National Science Foundation
More Like this
-
ABSTRACT Small molecules are the primary communication media of the microbial world. Recent bioinformatic studies, exploring the biosynthetic gene clusters (BGCs) which produce many small molecules, have highlighted the incredible biochemical potential of the signaling molecules encoded by the human microbiome. Thus far, most research efforts have focused on understanding the social language of the gut microbiome, leaving crucial signaling molecules produced by oral bacteria and their connection to health versus disease in need of investigation. In this study, a total of 4,915 BGCs were identified across 461 genomes representing a broad taxonomic diversity of oral bacteria. Sequence similarity networking provided a putative product class for more than 100 unclassified novel BGCs. The newly identified BGCs were cross-referenced against 254 metagenomes and metatranscriptomes derived from individuals either with good oral health or with dental caries or periodontitis. This analysis revealed 2,473 BGCs, which were differentially represented across the oral microbiomes associated with health versus disease. Coabundance network analysis identified numerous inverse correlations between BGCs and specific oral taxa. These correlations were present in healthy individuals but greatly reduced in individuals with dental caries, which may suggest a defect in colonization resistance. Finally, corroborating mass spectrometry identified several compounds with homologymore »
-
Abstract Atopic dermatitis (AD) is a common skin disease in childhood whose diagnosis requires expertise in dermatology. Recent studies have indicated that host genes–microbial interactions in the gut contribute to human diseases including AD. We sought to develop an accurate and automated pipeline for AD diagnosis based on transcriptome and microbiota data. Using these data of 161 subjects including AD patients and healthy controls, we trained a machine learning classifier to predict the risk of AD. We found that the classifier could accurately differentiate subjects with AD and healthy individuals based on the omics data with an average F1-score of 0.84. With this classifier, we also identified a set of 35 genes and 50 microbiota features that are predictive for AD. Among the selected features, we discovered at least three genes and three microorganisms directly or indirectly associated with AD. Although further replications in other cohorts are needed, our findings suggest that these genes and microbiota features may provide novel biological insights and may be developed into useful biomarkers of AD prediction.
-
Gilbert, Jack A. (Ed.)ABSTRACT Many commensal bacteria antagonize each other or their host by producing syringe-like secretion systems called contractile injection systems (CIS). Members of the Bacteroidales family have been shown to produce only one type of CIS—a contact-dependent type 6 secretion system that mediates bacterium-bacterium interactions. Here, we show that a second distinct cluster of genes from Bacteroidales bacteria from the human microbiome may encode yet-uncharacterized injection systems that we term Bacteroidales injection systems (BIS). We found that BIS genes are present in the gut microbiomes of 99% of individuals from the United States and Europe and that BIS genes are more prevalent in the gut microbiomes of healthy individuals than in those individuals suffering from inflammatory bowel disease. Gene clusters similar to that of the BIS mediate interactions between bacteria and diverse eukaryotes, like amoeba, insects, and tubeworms. Our findings highlight the ubiquity of the BIS gene cluster in the human gut and emphasize the relevance of the gut microbiome to the human host. These results warrant investigations into the structure and function of the BIS and how they might mediate interactions between Bacteroidales bacteria and the human host or microbiome. IMPORTANCE To engage with host cells, diverse pathogenic bacteria producemore »
-
Abstract Carbohydrate Active EnZymes (CAZymes) are significantly important for microbial communities to thrive in carbohydrate rich environments such as animal guts, agricultural soils, forest floors, and ocean sediments. Since 2017, microbiome sequencing and assembly have produced numerous metagenome assembled genomes (MAGs). We have updated our dbCAN-seq database (https://bcb.unl.edu/dbCAN_seq) to include the following new data and features: (i) ∼498 000 CAZymes and ∼169 000 CAZyme gene clusters (CGCs) from 9421 MAGs of four ecological (human gut, human oral, cow rumen, and marine) environments; (ii) Glycan substrates for 41 447 (24.54%) CGCs inferred by two novel approaches (dbCAN-PUL homology search and eCAMI subfamily majority voting) (the two approaches agreed on 4183 CGCs for substrate assignments); (iii) A redesigned CGC page to include the graphical display of CGC gene compositions, the alignment of query CGC and subject PUL (polysaccharide utilization loci) of dbCAN-PUL, and the eCAMI subfamily table to support the predicted substrates; (iv) A statistics page to organize all the data for easy CGC access according to substrates and taxonomic phyla; and (v) A batch download page. In summary, this updated dbCAN-seq database highlights glycan substrates predicted for CGCs from microbiomes. Future work will implement the substrate prediction function in our dbCAN2more »
-
Hird, Sarah M. (Ed.)The gut microbiome provides vital functions for mammalian hosts, yet research on its variability and function across adult life spans and multiple generations is limited in large mammalian carnivores. Here, we used 16S rRNA gene and metagenomic high-throughput sequencing to profile the bacterial taxonomic composition, genomic diversity, and metabolic function of fecal samples collected from 12 wild spotted hyenas ( Crocuta crocuta ) residing in the Masai Mara National Reserve, Kenya, over a 23-year period spanning three generations. The metagenomic data came from four of these hyenas and spanned two 2-year periods. With these data, we determined the extent to which host factors predicted variation in the gut microbiome and identified the core microbes present in the guts of hyenas. We also investigated novel genomic diversity in the mammalian gut by reporting the first metagenome-assembled genomes (MAGs) for hyenas. We found that gut microbiome taxonomic composition varied temporally, but despite this, a core set of 14 bacterial genera were identified. The strongest predictors of the microbiome were host identity and age, suggesting that hyenas possess individualized microbiomes and that these may change with age during adulthood. The gut microbiome functional profiles of the four adult hyenas were also individual specificmore »