skip to main content


Title: Using a Paired Chironomid δ 18 O and Aquatic Leaf Wax δ 2 H Approach to Reconstruct Seasonality on Western Greenland During the Holocene
Abstract

The Arctic hydrological cycle is predicted to intensify as the Arctic warms, due to increased poleward moisture transport during summer and increased evaporation from seas once ice‐covered during winter. Records of past Arctic precipitation seasonality are important because they provide a context for these ongoing changes. In some Arctic lakes, stable isotopes of oxygen and hydrogen (δ18O and δ2H, respectively) vary seasonally, due to seasonal changes in precipitation δ18O and δ2H. We reconstruct precipitation seasonality from Lake N3, a well‐dated lake sediment archive in Disko Bugt, western Greenland, by generating Holocene records of two proxies that are produced at different times of the year, and therefore record different lake water seasonal isotopic compositions. Aquatic plants synthesize waxes throughout the summer, and their δ2H reflects winter‐biased precipitation δ2H at Lake N3, whereas chironomids synthesize their head capsules between late summer and winter, and their δ18O reflects summer‐biased precipitation δ18O at Lake N3. During the middle Holocene at Lake N3, aquatic plant leaf wax was strongly2H‐depleted, while chironomid chitin was18O‐enriched. We guide interpretations of these records using sensitivity tests of a lake water and energy balance model, where we change precipitation amount and isotope seasonality inputs. The sensitivity tests suggest that the contrasting trends between proxies were likely caused by an increase in precipitation amount during all seasons and an increase in precipitation isotope seasonality, in addition to proxy‐specific mechanisms, highlighting the importance of understanding lake‐ and proxy‐specific systematics when interpreting records from sediment archives.

 
more » « less
Award ID(s):
1652274 1504267
NSF-PAR ID:
10449172
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Paleoceanography and Paleoclimatology
Volume:
36
Issue:
4
ISSN:
2572-4517
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Arctic precipitation is predicted to increase this century. Records of past precipitation seasonality provide baselines for a mechanistic understanding of the dynamics controlling Arctic precipitation. We present an approach to reconstruct Arctic precipitation seasonality using stable hydrogen isotopes (δ2H) of aquatic plant waxes in neighboring lakes with contrasting water residence times and present a case study of this approach in two lakes on western Greenland. Residence time calculations suggest that growing season lake water δ2H in one lake reflects summer precipitation δ2H, while the other reflects amount‐weighted annual precipitation δ2H and evaporative enrichment. Aquatic plant wax δ2H in the “summer lake” is relatively constant throughout the Holocene, perhaps reflecting competing effects of local summer warmth and increased distal moisture transport due to a strengthened latitudinal temperature gradient. In contrast, aquatic plant wax δ2H in the “mean annual lake” is 100‰2H depleted from 6 to 4 ka relative to the beginning and end of the record. Because there are relatively minor changes in summer precipitation δ2H, we interpret the 100‰2H depletion in mean annual precipitation to reflect an increase in winter precipitation amount, likely accompanied by changes in winter precipitation δ2H and decreased evaporative enrichment. Thus, unlike the “summer lake,” the “mean annual lake” records changes in winter precipitation. This dual‐lake approach may be applied to reconstruct past changes in precipitation seasonality at sites with strong precipitation isotope seasonality and minimal lake water evaporative enrichment.

     
    more » « less
  2. Abstract

    Lacustrine δ2H and δ18O isotope proxies are powerful tools for reconstructing past climate and precipitation changes in the Arctic. However, robust paleoclimate record interpretations depend on site‐specific lake water isotope systematics, which are poorly described in the eastern Canadian Arctic due to insufficient modern lake water isotope data. We use modern lake water isotopes (δ18O and δ2H) collected between 1994–1997 and 2017–2021 from a transect of sites spanning a Québec‐to‐Ellesmere Island gradient to evaluate the effects of inflow seasonality and evaporative enrichment on the δ2H and δ18O composition of lake water. Four lakes near Iqaluit, Nunavut sampled biweekly through three ice‐free seasons reflect mean annual precipitation isotopes with slight evaporative enrichment. In a 23° latitudinal transect of 181 lakes, through‐flowing lake water δ2H and δ18O fall along local meteoric water lines. Despite variability within each region, we observe a latitudinal pattern: southern lakes reflect mean annual precipitation isotopes, whereas northern lakes reflect summer‐biased precipitation isotopes. This pattern suggests that northern lakes are more fully flushed with summer precipitation, and we hypothesize that this occurs because the ratio of runoff to precipitation increases with latitude as vegetation cover decreases. Therefore, proxy records from through‐flowing lakes in this region should reflect precipitation isotopes with minimal influence of evaporation, but vegetation changes in lake catchments across a latitudinal transect and through geologic time may influence the seasonality of lake water isotopic compositions. Thus, we recommend that future lake water isotope proxy records are considered in context with temperature and ecological proxy records.

     
    more » « less
  3. Abstract

    Measurements of oxygen and hydrogen stable isotopes in precipitation (δ18OPand δ2HP) provide a valuable tool for understanding modern hydrological processes and the empirical foundation for interpreting paleoisotope archives. However, long‐term data sets of modern δ18OPand δ2HPin southern Alaska are entirely absent, thus limiting our insight and application of regionally defined climate‐isotope relationships in this proxy‐rich region. We present and utilize a 13‐year‐long record of event‐based δ18OPand δ2HPdata from Anchorage, Alaska (2005–2018,n = 332), to determine the mechanisms controlling precipitation isotopes. Local surface air temperature explains ~30% of variability in the δ18OPdata with a temperature‐δ18O slope of 0.31 ‰/°C, indicating that δ18OParchives may not be suitable paleo‐thermometers in this region. Instead, back‐trajectory modeling reveals how winter δ18OP2HPreflects synoptic and mesoscale processes in atmospheric circulation that drive changes in the passage of air masses with different moisture sources, transport, and rainout histories. Specifically, meridional systems—with either northerly flow from the Arctic or southerly flow from the Gulf of Alaska—have relatively low δ18OP2HPdue to progressive cooling and removal of precipitation as it condenses with altitude over Alaska's southern mountain ranges. To the contrary, zonally derived moisture from either the North Pacific and/or Bering Sea retains relatively high δ18OP2HPvalues. These new data contribute a better understanding of the modern Alaska water isotope cycle and provide an empirical basis for interpreting paleoisotope archives in context of regional atmospheric circulation.

     
    more » « less
  4. Abrupt climate changes during the last deglaciation have been well preserved in proxy records across the globe. However, one long-standing puzzle is the apparent absence of the onset of the Heinrich Stadial 1 (HS1) cold event around 18 ka in Greenland ice core oxygen isotope δ 18 O records, inconsistent with other proxies. Here, combining proxy records with an isotope-enabled transient deglacial simulation, we propose that a substantial HS1 cooling onset did indeed occur over the Arctic in winter. However, this cooling signal in the depleted oxygen isotopic composition is completely compensated by the enrichment because of the loss of winter precipitation in response to sea ice expansion associated with AMOC slowdown during extreme glacial climate. In contrast, the Arctic summer warmed during HS1 and YD because of increased insolation and greenhouse gases, consistent with snowline reconstructions. Our work suggests that Greenland δ 18 O may substantially underestimate temperature variability during cold glacial conditions. 
    more » « less
  5. Abstract

    Oxygen isotope speleothems have been widely used to infer past climate changes over tropical South America (TSA). However, the spatial patterns of the millennial precipitation and precipitationδ18O (δ18Op) response have remained controversial, and their response mechanisms are unclear. In particular, it is not clear whether the regional precipitation represents the intensity of the millennial South American summer monsoon (SASM). Here, we study the TSA hydroclimate variability during the last deglaciation (20–11 ka ago) by combining transient simulations of an isotope-enabled Community Earth System Model (iCESM) and the speleothem records over the lowland TSA. Our model reasonably simulates the deglacial evolution of hydroclimate variables and water isotopes over the TSA, albeit underestimating the amplitude of variability. North Atlantic meltwater discharge is the leading factor driving the TSA’s millennial hydroclimate variability. The spatial pattern of both precipitation andδ18Opshow a northwest–southeast dipole associated with the meridional migration of the intertropical convergence zone, instead of a continental-wide coherent change as inferred in many previous works on speleothem records. The dipole response is supported by multisource paleoclimate proxies. In response to increased meltwater forcing, the SASM weakened (characterized by a decreased low-level easterly wind) and consequently reduced rainfall in the western Amazon and increased rainfall in eastern Brazil. A similar dipole response is also generated by insolation, ice sheets, and greenhouse gases, suggesting an inherent stability of the spatial characteristics of the SASM regardless of the external forcing and time scales. Finally, we discuss the potential reasons for the model–proxy discrepancy and pose the necessity to build more paleoclimate proxy data in central-western Amazon.

    Significance Statement

    We want to reconcile the controversy on whether there is a coherent or heterogeneous response in millennial hydroclimate over tropical South America and to clearly understand the forcing mechanisms behind it. Our isotope-enabled transient simulations fill the gap in speleothem reconstructions to capture a complete picture of millennial precipitation/δ18Opand monsoon intensity change. We highlight a heterogeneous dipole response in precipitation andδ18Opon millennial and orbital time scales. Increased meltwater discharge shifts ITCZ southward and favors a wet condition in coastal Brazil. Meanwhile, the low-level easterly and the summer monsoon intensity reduced, causing a dry condition in the central-western Amazon. However, the millennial variability of hydroclimate response is underestimated in our model, together with the lack of direct paleoclimate proxies in the central-west Amazon, complicating the interpretation of changes in specific paleoclimate events and posing a challenge to constraining the spatial range of the dipole. Therefore, we emphasize the necessity to increase the source of proxies, enhance proxy interpretations, and improve climate model performance in the future.

     
    more » « less