skip to main content


Title: Sickness behaviors across vertebrate taxa: proximate and ultimate mechanisms
ABSTRACT There is nothing like a pandemic to get the world thinking about how infectious diseases affect individual behavior. In this respect, sick animals can behave in ways that are dramatically different from healthy animals: altered social interactions and changes to patterns of eating and drinking are all hallmarks of sickness. As a result, behavioral changes associated with inflammatory responses (i.e. sickness behaviors) have important implications for disease spread by affecting contacts with others and with common resources, including water and/or sleeping sites. In this Review, we summarize the behavioral modifications, including changes to thermoregulatory behaviors, known to occur in vertebrates during infection, with an emphasis on non-mammalian taxa, which have historically received less attention. We then outline and discuss our current understanding of the changes in physiology associated with the production of these behaviors and highlight areas where more research is needed, including an exploration of individual and sex differences in the acute phase response and a greater understanding of the ecophysiological implications of sickness behaviors for disease at the population level.  more » « less
Award ID(s):
1845634 1814520
NSF-PAR ID:
10233513
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Experimental Biology
Volume:
224
Issue:
9
ISSN:
0022-0949
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Historically, the fields of ecoimmunology, psychoneuroimmunology and disease ecology have taken complementary yet disparate theoretical and experimental approaches, despite sharing critical common themes. Researchers in these areas have largely worked independently of one another to understand mechanistic immunological responses, organismal level immune performance, behavioral changes, and host and parasite/disease population dynamics, with few bridges across disciplines. Although efforts to strengthen and expand these bridges have been called for (and occasionally heeded) over the last decade, more integrative studies are only now beginning to emerge, with critical gaps remaining. Here, we briefly discuss the origins of these key fields, and their current state of integration, while highlighting several critical directions that we suggest will strengthen their connections into the future. Specifically, we highlight three key research areas that provide collaborative opportunities for integrative investigation across multiple levels of biological organization, from mechanisms to ecosystems: (1) parental effects of immunity, (2) microbiome and immune function and (3) sickness behaviors. By building new bridges among these fields, and strengthening existing ones, a truly integrative approach to understanding the role of host immunity on individual and community fitness is within our grasp. 
    more » « less
  2. Miller, Samuel I. (Ed.)
    ABSTRACT Animals that are competent reservoirs of zoonotic pathogens commonly suffer little morbidity from the infections. To investigate mechanisms of this tolerance of infection, we used single-dose lipopolysaccharide (LPS) as an experimental model of inflammation and compared the responses of two rodents: Peromyscus leucopus , the white-footed deermouse and reservoir for the agents of Lyme disease and other zoonoses, and the house mouse Mus musculus . Four hours after injection with LPS or saline, blood, spleen, and liver samples were collected and subjected to transcriptome sequencing (RNA-seq), metabolomics, and specific reverse transcriptase quantitative PCR (RT-qPCR). Differential expression analysis was at the gene, pathway, and network levels. LPS-treated deermice showed signs of sickness similar to those of exposed mice and had similar increases in corticosterone levels and expression of interleukin 6 (IL-6), tumor necrosis factor, IL-1β, and C-reactive protein. By network analysis, the M. musculus response to LPS was characterized as cytokine associated, while the P. leucopus response was dominated by neutrophil activity terms. In addition, dichotomies in the expression levels of arginase 1 and nitric oxide synthase 2 and of IL-10 and IL-12 were consistent with type M1 macrophage responses in mice and type M2 responses in deermice. Analysis of metabolites in plasma and RNA in organs revealed species differences in tryptophan metabolism. Two genes in particular signified the different phenotypes of deermice and mice: the Slpi and Ibsp genes. Key RNA-seq findings for P. leucopus were replicated in older animals, in a systemic bacterial infection, and with cultivated fibroblasts. The findings indicate that P. leucopus possesses several adaptive traits to moderate inflammation in its balancing of infection resistance and tolerance. IMPORTANCE Animals that are natural carriers of pathogens that cause human diseases commonly manifest little or no sickness as a consequence of infection. Examples include the deermouse, Peromyscus leucopus , which is a reservoir for Lyme disease and several other disease agents in North America, and some types of bats, which are carriers of viruses with pathogenicity for humans. Mechanisms of this phenomenon of infection tolerance and entailed trade-off costs are poorly understood. Using a single injection of lipopolysaccharide (LPS) endotoxin as a proxy for infection, we found that deermice differed from the mouse ( Mus musculus ) in responses to LPS in several diverse pathways, including innate immunity, oxidative stress, and metabolism. Features distinguishing the deermice cumulatively would moderate downstream ill effects of LPS. Insights gained from the P. leucopus model in the laboratory have implications for studying infection tolerance in other important reservoir species, including bats and other types of wildlife. 
    more » « less
  3. From birds that preen their feathers to dogs that lick their fur, many animals groom themselves. They do so to stay clean, but routine grooming also has a range of other uses, such as social communication or controlling body temperature. Despite its importance, grooming remains poorly understood; it is especially unclear how this behavior is regulated. Fruit flies could be a good model to study grooming because they are often used in laboratories to look into the genetic and brain mechanisms that control behavior. Flies clean themselves by sweeping their legs over their wings and body, but little is known about how the insects groom ‘naturally’ over long periods of time. This is partly because scientists have had to recognize and classify grooming behavior by eye, which is highly time-consuming. Here, Qiao, Li et al. have created a system to automatically detect grooming behavior in fruit flies over time. First, a camera records the movement of an individual insect. A computer then analyzes the images and picks out general features of the fly’s movement that can help work out what the insect is doing. For example, if a fly is moving its limbs, but not the main part of its body, it is probably grooming itself. Qiao, Li et al. then borrowed an algorithm from an area of computer science known as ‘machine learning’ to teach the computer how to classify each fly’s behavior automatically. The new system successfully recognized grooming behavior in over 90% of cases, and it revealed that fruit flies spend about 13% of their waking life grooming. It also showed that grooming seems to be controlled by two potentially independent internal programs. One program is tied to the internal body clock of the fly, and regulates when the insect grooms during the day. The other commands how long the fly cleans itself, and balances the amount of time spent on grooming with other behaviors. Cleaning oneself is not just important for animals to stay disease-free: it also reflects the general health state of an individual. For example, a loss of grooming is associated with sickness, old age, and, in humans, with mental illness. If scientists can understand how grooming is controlled at the brain and molecular levels, this may give an insight into how these mechanisms relate to diseases. The system created by Qiao, Li et al. could help to make such studies possible. 
    more » « less
  4. Abstract

    While infection and perceived infection risk can influence social and reproductive behavior in several taxa, relatively little is known about how infection specifically affects pair bond behaviors. Some pair bond maintenance behaviors may be costly to maintain during infection, and infection could promote avoidance behaviors within an established pair. Many species exhibiting pair bonds are part of larger social groups, and behavioral shifts in established pairs can result in altered extra-pair contact rates that could also shape disease transmission. Using captive zebra finches (Taeniopygia guttata), we examined how an immune challenge with lipopolysaccharide (LPS) influences activity, social behavior, and pair bond maintenance behaviors in established pairs and their healthy neighbors. We observed shifts in individual and pair maintenance behaviors in both immune-challenged pairs and healthy pairs exposed to a social cue of infection (sick conspecifics). Specifically, LPS-challenged birds decreased activity and social interaction attempts relative to control birds, consistent with LPS-induced sickness behavior. LPS-challenged birds also increased the frequency of clumping (perching together in bodily contact) between individuals within a pair. Healthy birds exposed to immune-challenged conspecifics decreased flight activity and increased self-preening, behaviors which could function to limit infection risk. Exploring how both infection and the perceived risk of infection shape behaviors within and among paired individuals will increase our understanding of the role of social behaviors in shaping disease dynamics.

     
    more » « less
  5. Abstract

    It is well known that fishing is size‐selective, but harvest may also inadvertently target certain behavioral types or personalities. Changes in the abundance of behavioral types within a population have implications for fisheries management, including affecting catch rates, individual growth, and food web dynamics. Using streamside behavioral assays, we quantified the repeatability of behaviors in a population of Baikal grayling (Thymallus baicalensis) in northern Mongolia, a popular sport fish and important local predator. We assessed whether different angling techniques (i.e., fly or spinning gear) collected different behavioral types and whether variation in behavior was associated with body condition or diet (i.e., using stable isotope analysis). Surprisingly, we found no evidence for consistent individual differences in several behaviors within this population. Furthermore, differences in mean behaviors were not predicted by angling gear, body condition, or carbon and nitrogen isotopic signatures. We suggest that since this is a fished population, the range of behavioral variability in the population may have been reduced through previous behaviorally selective harvest. This might explain both the lack of difference in mean behaviors between fish caught by both gear types and the lack of evidence for consistent individual differences in behavior within the sampled population.

     
    more » « less