skip to main content


Title: What Ingredients Make for an Effective Crowdsourcing Protocol for Difficult NLU Data Collection Tasks?
Crowdsourcing is widely used to create data for common natural language understanding tasks. Despite the importance of these datasets for measuring and refining model understanding of language, there has been little focus on the crowdsourcing methods used for collecting the datasets. In this paper, we compare the efficacy of interventions that have been proposed in prior work as ways of improving data quality. We use multiple-choice question answering as a testbed and run a randomized trial by assigning crowdworkers to write questions under one of four different data collection protocols. We find that asking workers to write explanations for their examples is an ineffective stand-alone strategy for boosting NLU example difficulty. However, we find that training crowdworkers, and then using an iterative process of collecting data, sending feedback, and qualifying workers based on expert judgments is an effective means of collecting challenging data. But using crowdsourced, instead of expert judgments, to qualify workers and send feedback does not prove to be effective. We observe that the data from the iterative protocol with expert assessments is more challenging by several measures. Notably, the human--model gap on the unanimous agreement portion of this data is, on average, twice as large as the gap for the baseline protocol data.  more » « less
Award ID(s):
1850208
NSF-PAR ID:
10233714
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Relevance feedback techniques assume that users provide relevance judgments for the top k (usually 10) documents and then re-rank using a new query model based on those judgments. Even though this is effective, there has been little research recently on this topic because requiring users to provide substantial feedback on a result list is impractical in a typical web search scenario. In new environments such as voice-based search with smart home devices, however, feedback about result quality can potentially be obtained during users' interactions with the system. Since there are severe limitations on the length and number of results that can be presented in a single interaction in this environment, the focus should move from browsing result lists to iterative retrieval and from retrieving documents to retrieving answers. In this paper, we study iterative relevance feedback techniques with a focus on retrieving answer passages. We first show that iterative feedback can be at least as effective as the top-k approach on standard TREC collections, and more effective on answer passage collections. We then propose an iterative feedback model for answer passages based on semantic similarity at passage level and show that it can produce significant improvements compared to both word-based iterative feedback models and those based on term-level semantic similarity. 
    more » « less
  2. AI-based educational technologies may be most welcome in classrooms when they align with teachers' goals, preferences, and instructional practices. Teachers, however, have scarce time to make such customizations themselves. How might the crowd be leveraged to help time-strapped teachers? Crowdsourcing pipelines have traditionally focused on content generation. It is an open question how a pipeline might be designed so the crowd can succeed in a revision/customization task. In this paper, we explore an initial version of a teacher-guided crowdsourcing pipeline designed to improve the adaptive math hints of an AI-based tutoring system so they fit teachers' preferences, while requiring minimal expert guidance. In two experiments involving 144 math teachers and 481 crowdworkers, we found that such an expert-guided revision pipeline could save experts' time and produce better crowd-revised hints (in terms of teacher satisfaction) than two comparison conditions. The revised hints however, did not improve on the existing hints in the AI tutor, which were carefully-written but still have room for improvement and customization. Further analysis revealed that the main challenge for crowdworkers may lie in understanding teachers' brief written comments and implementing them in the form of effective edits, without introducing new problems. We also found that teachers preferred their own revisions over other sources of hints, and exhibited varying preferences for hints. Overall, the results confirm that there is a clear need for customizing hints to individual teachers' preferences. They also highlight the need for more elaborate scaffolds so the crowd can have specific knowledge of the requirements that teachers have for hints. The study represents a first exploration in the literature of how to support crowds with minimal expert guidance in revising and customizing instructional materials. 
    more » « less
  3. As more and more search traffic comes from mobile phones, intelligent assistants, and smart-home devices, new challenges (e.g., limited presentation space) and opportunities come up in information retrieval. Previously, an effective technique, relevance feedback (RF), has rarely been used in real search scenarios due to the overhead of collecting users’ relevance judgments. However, since users tend to interact more with the search results shown on the new interfaces, it becomes feasible to obtain users’ assessments on a few results during each interaction. This makes iterative relevance feedback (IRF) techniques look promising today. IRF can deal with a simplified scenario of conversational search, where the system asks users to provide relevance feedback on results shown in the current iteration and shows more relevant results in the next interaction. IRF has not been studied systematically in the new search scenarios and its effectiveness is mostly unknown. In this paper, we re-visit IRF and extend it with RF models proposed in recent years. We conduct extensive experiments to analyze and compare IRF with the standard top-k RF framework on document and passage retrieval. Experimental results show that IRF is at least as effective as the standard top-k RF framework for documents and much more effective for passages. This indicates that IRF for passage retrieval has huge potential and is a promising direction for conversational search based on relevance feedback. 
    more » « less
  4. Crowdsourcing platforms emerged as popular venues for purchasing human intelligence at low cost for large volume of tasks. As many low-paid workers are prone to give noisy answers, a common practice is to add redundancy by assigning multiple workers to each task and then simply average out these answers. However, to fully harness the wisdom of the crowd, one needs to learn the heterogeneous quality of each worker. We resolve this fundamental challenge in crowdsourced regression tasks, i.e., the answer takes continuous labels, where identifying good or bad workers becomes much more non-trivial compared to a classification setting of discrete labels. In particular, we introduce a Bayesian iterative scheme and show that it provably achieves the optimal mean squared error. Our evaluations on synthetic and real-world datasets support our theoretical results and show the superiority of the proposed scheme. 
    more » « less
  5. Writing scientific explanations is a core practice in science. However, students find it difficult to write coherent scientific explanations. Additionally, teachers find it challenging to provide real-time feedback on students’ essays. In this study, we discuss how PyrEval, an NLP technology, was used to automatically assess students’ essays and provide feedback. We found that students explained more key ideas in their essays after the automated assessment and feedback. However, there were issues with the automated assessments as well as students’ understanding of the feedback and revising their essays. 
    more » « less