skip to main content


Title: The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive Multicellularity
Early multicellular organisms must gain adaptations to outcompete their unicellular ancestors, as well as other multicellular lineages. The tempo and mode of multicellular adaptation is influenced by many factors including the traits of individual cells. We consider how a fundamental aspect of cells, whether they reproduce via binary fission or budding, can affect the rate of adaptation in primitive multicellularity. We use mathematical models to study the spread of beneficial, growth rate mutations in unicellular populations and populations of multicellular filaments reproducing via binary fission or budding. Comparing populations once they reach carrying capacity, we find that the spread of mutations in multicellular budding populations is qualitatively distinct from the other populations and in general slower. Since budding and binary fission distribute age-accumulated damage differently, we consider the effects of cellular senescence. When growth rate decreases with cell age, we find that beneficial mutations can spread significantly faster in a multicellular budding population than its corresponding unicellular population or a population reproducing via binary fission. Our results demonstrate that basic aspects of the cell cycle can give rise to different rates of adaptation in multicellular organisms.  more » « less
Award ID(s):
1656549 1845363 1656849
NSF-PAR ID:
10233733
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Genes
Volume:
12
Issue:
5
ISSN:
2073-4425
Page Range / eLocation ID:
661
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Experimental evolution is an approach that allows researchers to study organisms as they evolve in controlled environments. Despite the growing popularity of this approach, there are conceptual gaps among projects that use different experimental designs. One such gap concerns the contributions to adaptation of genetic variation present at the start of an experiment and that of new mutations that arise during an experiment. The primary source of genetic variation has historically depended largely on the study organisms. In the long-term evolution experiment (LTEE) using Escherichia coli , for example, each population started from a single haploid cell, and therefore, adaptation depended entirely on new mutations. Most other microbial evolution experiments have followed the same strategy. By contrast, evolution experiments using multicellular, sexually reproducing organisms typically start with preexisting variation that fuels the response to selection. New mutations may also come into play in later generations of these experiments, but it is generally difficult to quantify their contribution in these studies. Here, we performed an experiment using E. coli to compare the contributions of initial genetic variation and new mutations to adaptation in a new environment. Our experiment had four treatments that varied in their starting diversity, with 18 populations in each treatment. One treatment depended entirely on new mutations, while the other three began with mixtures of clones, whole-population samples, or mixtures of whole-population samples from the LTEE. We tracked a genetic marker associated with different founders in two treatments. These data revealed significant variation in fitness among the founders, and that variation impacted evolution in the early generations of our experiment. However, there were no differences in fitness among the treatments after 500 or 2,000 generations in the new environment, despite the variation in fitness among the founders. These results indicate that new mutations quickly dominated, and eventually they contributed more to adaptation than did the initial variation. Our study thus shows that preexisting genetic variation can have a strong impact on early evolution in a new environment, but new beneficial mutations may contribute more to later evolution and can even drive some initially beneficial variants to extinction. 
    more » « less
  2. Populations of cancer cells are subject to the same core evolutionary processes as asexually reproducing, unicellular organisms. Transmissible cancers are particularly striking examples of these processes. These unusual cancers are clonal lineages that can spread through populations via physical transfer of living cancer cells from one host individual to another, and they have achieved long-term success in the colonization of at least eight different host species. Population genetic theory provides a use- ful framework for understanding the shift from a multicellular sexual animal into a unicellular asexual clone and its long-term effects on the genomes of these cancers. In this Review, we consider recent findings from transmissible cancer research with the goals of developing an evolutionarily informed perspective on transmissible cancers, examining possible implications for their long-term fate and identifying areas for future research on these exceptional lineages. 
    more » « less
  3. Abstract

    Unicellular organisms can engage in a process by which a cell purposefully destroys itself, termed programmed cell death (PCD). While it is clear that the death of specific cells within amulticellularorganism could increase inclusive fitness (e.g., during development), the origin of PCD inunicellularorganisms is less obvious. Kin selection has been shown to help maintain instances of PCD in existing populations of unicellular organisms; however, competing hypotheses exist about whether additional factors are necessary to explain its origin. Those factors could include an environmental shift that causes latent PCD to be expressed, PCD hitchhiking on a large beneficial mutation, and PCD being simply a common pathology. Here, we present results using an artificial life model to demonstrate that kin selection can, in fact, be sufficient to give rise to PCD in unicellular organisms. Furthermore, when benefits to kin are direct—that is, resources provided to nearby kin—PCD is more beneficial than when benefits are indirect—that is, nonkin are injured, thus increasing the relative amount of resources for kin. Finally, when considering how strict organisms are in determining kin or nonkin (in terms of mutations), direct benefits are viable in a narrower range than indirect benefits.

    Open Research Badges

    This article has been awarded Open Data and Open Materials Badges. All materials and data are publicly accessible via the Open Science Framework athttps://github.com/anyaevostinar/SuicidalAltruismDissertation/tree/master/LongTerm.

     
    more » « less
  4. Csikász-Nagy, Attila (Ed.)
    Microbial populations show striking diversity in cell growth morphology and lifecycle; however, our understanding of how these factors influence the growth rate of cell populations remains limited. We use theory and simulations to predict the impact of asymmetric cell division, cell size regulation and single-cell stochasticity on the population growth rate. Our model predicts that coarse-grained noise in the single-cell growth rate λ decreases the population growth rate, as previously seen for symmetrically dividing cells. However, for a given noise in λ we find that dividing asymmetrically can enhance the population growth rate for cells with strong size control (between a “sizer” and an “adder”). To reconcile this finding with the abundance of symmetrically dividing organisms in nature, we propose that additional constraints on cell growth and division must be present which are not included in our model, and we explore the effects of selected extensions thereof. Further, we find that within our model, epigenetically inherited generation times may arise due to size control in asymmetrically dividing cells, providing a possible explanation for recent experimental observations in budding yeast. Taken together, our findings provide insight into the complex effects generated by non-canonical growth morphologies. 
    more » « less
  5. Selection of mutants in a microbial population depends on multiple cellular traits. In serial-dilution evolution experiments, three key traits are the lag time when transitioning from starvation to growth, the exponential growth rate, and the yield (number of cells per unit resource). Here, we investigate how these traits evolve in laboratory evolution experiments using a minimal model of population dynamics, where the only interaction between cells is competition for a single limiting resource. We find that the fixation probability of a beneficial mutation depends on a linear combination of its growth rate and lag time relative to its immediate ancestor, even under clonal interference. The relative selective pressure on growth rate and lag time is set by the dilution factor; a larger dilution factor favors the adaptation of growth rate over the adaptation of lag time. The model shows that yield, however, is under no direct selection. We also show how the adaptation speeds of growth and lag depend on experimental parameters and the underlying supply of mutations. Finally, we investigate the evolution of covariation between these traits across populations, which reveals that the population growth rate and lag time can evolve a nonzero correlation even if mutations have uncorrelated effects on the two traits. Altogether these results provide useful guidance to future experiments on microbial evolution. 
    more » « less