skip to main content

Title: Empathic approaches in engineering capstone design projects: student beliefs and reported behaviour
Engineering design decisions have non-trivial implications, and empathic approaches are one way that engineers can understand and translate the perspectives of diverse stakeholders. Prior literature demonstrates that students must develop empathic skills and beliefs that these skills are important to embody empathic approaches in meaningful ways. However, we have limited understanding of the relationship between students’ beliefs about the value of empathy in engineering decision making and how they describe their reported use of empathic approaches. We collected qualitative data through interviews with ten undergraduate engineering students in capstone design. We found that our participants espoused a belief that empathic approaches are valuable in engineering design decisions. However, while students considered diverse perspectives when describing how they made design decisions, their reported behaviour during design decisions did not demonstrate translation of their empathic understanding. Based on these findings, we provide recommendations to educators and researchers.
Authors:
; ; ;
Award ID(s):
1821866
Publication Date:
NSF-PAR ID:
10233800
Journal Name:
European journal of engineering education
ISSN:
0304-3797
Sponsoring Org:
National Science Foundation
More Like this
  1. Engineering design decisions have non-trivial implications, and empathic approaches are one way that engineers can understand and translate the perspectives of diverse stakeholders. Prior literature demonstrates that students must develop empathic skills and beliefs that these skills are important to embody empathic approaches in meaningful ways. However, we have limited understanding of the relationship between students’ beliefs about the value of empathy in engineering decision making and how they describe their reported use of empathic approaches. We collected qualitative data through interviews with ten undergraduate engineering students in capstone design. We found that our participants espoused a belief that empathicmore »approaches are valuable in engineering design decisions. However, while students considered diverse perspectives when describing how they made design decisions, their reported behaviour during design decisions did not demonstrate translation of their empathic understanding. Based on these findings, we provide recommendations to educators and researchers.« less
  2. How undergraduates are introduced to the discipline of engineering at the college level can have long-term educational and professional implications, including influencing decisions to pursue or leave engineering majors and validating beliefs about the purpose of engineering in society. Classroom lectures have been traditionally used within introductory engineering courses as they can transmit large amounts of content. However, they are generally less effective in helping undergraduates engage with and apply content. In recognition of this, learner-centered approaches are increasingly being used in introductory engineering classes. Our overarching purpose in this paper was to describe the use of the design processmore »in an introductory engineering course that enrolled close to two hundred students, most of whom were in their first year in college. As we argued, these are the students who might most benefit from design process participation. We found that in general, the design process was transferable to this educational context. Most students seemed far more engaged than students in previous course offerings that had been delivered in a traditional format. Notably, students reported that in addition to learning course content, they learned creativity, persistence, problem-solving skills, leadership skills, and teamwork skills. However, perhaps the main contribution of engaging freshmen and other early-stage students in the design process was in fostering in them a greater understanding of the impact that engineers can have on society.« less
  3. his project is supported by an NSF BPE grant. Career choices, such as engineering, are influenced by a number of factors including personal interest, ability, competence beliefs, prior work-related experience, and financial and social supports. However, financial and social support, a particularly significant factor for rural students’ career decisions, is often overlooked in the literature exploring career choice. Moreover, little work has explored how communities serve as key influencers for supporting or promoting engineering as a career choice. Therefore, the goal of this study is to explore the ways in which communities provide support to students deciding to pursue engineeringmore »as a college major. To better understand how students from selected rural area high schools choose engineering as a major, we conducted focus group discussions consisting of 4-6 students each from selected schools to talk collectively about their high school experiences and their choice to major in engineering. Choosing focus group participants from different schools enabled us to elicit tacit perceptions and beliefs that may not be evident when students from the same community talk with one another. That is, as students share their experiences across schools, they may recognize differences in their experiences that, though otherwise unconscious or unacknowledged, proved significant in their choice of college and major. We expect that certain community programs and the individuals involved will have some influence on students’ decisions to study engineering at [University Name]. We anticipate that the results will yield two key outcomes: 1. A holistic understanding of the communities that effectively support and encourage engineering major choice for rural students. 2. Locally driven, contextually relevant recommendations for policies and programs that would better enable economically disadvantaged, rural schools in southwestern Virginia to support engineering as a career choice for high school students. By understanding the ways some economically-disadvantaged rural communities support engineering as a career choice and linking a broad spectrum of rural communities together around this issue, this project will broaden participation in engineering by increasing support for students from these areas. By shifting our focus from students to communities, this research broadens our understanding of career choice by capturing the perspectives of community members (including not only school personnel, but also community leaders, students’ families, business owners and others) who often play a key role in students’ decisions, particularly in rural communities. Our research will bring these voices into the conversation to help scholars learn from and respond to these essential community perspectives. In doing so, we will provide a more nuanced model of engineering career choice that can then be explored in other rural contexts. This work thus contributes to the research on career choice, rural education, and engineering education. © 2018 American Society for Engineering Education« less
  4. https://peer.asee.org/29062 This theory paper explores how diversity apart from social identities like race and gender is framed in the engineering education literature and how these concepts promote a different but compatible approach to understanding diversity—latent diversity. Latent diversity is a new approach to diversity work that captures underlying affective and cognitive differences that provide potential sources for innovation but are not visible. This approach does not examine other non-visible social identities like sexual orientation, first-generation status, socioeconomic status, etc. Prior literature suggests that diversity in approaches, problem solving, and ways of thinking improve innovation in engineering design more reliably thanmore »does diversity along the lines of age, race, gender, etc. However, the process of enculturating students into engineering through engineering curriculum often creates homogeneity in students’ approaches to problems, ways of thinking, and attitudes. In this paper, I explore a limited set of existing research on diversity from these underlying perspectives including identities, alternative ways of thinking and being, motivation, cognitive diversity, and innovation and creativity. This work synthesizes the findings of these studies to paint a rich picture of how students develop different attitudes and skills to navigate their paths within engineering. Additionally, this work provides an evidence-based argument for the importance of recognizing and understanding latent diversity to promote a more inclusive environment in engineering and recruit, educate, retain, and graduate more innovative and diverse engineers. This paper opens the conversation about a new, but complementary, focus for developing a STEM workforce rich in talent and capable of adapting to the changing STEM landscape.« less
  5. Engineers are expected to make decisions in the context of design, which is ill-structured. Capstone courses serve as an opportunity for engineering students to engage in design and practice making decisions that do not have a single correct answer. Empirical research has demonstrated that when making such decisions, people use informal reasoning, of which there are multiple types: rationalistic, intuitive, and empathic. Despite this reality, engineering education often portrays decision making in the context of engineering design as objective. For example, capstone design instruction typically focuses on providing students with tools to facilitate rational reasoning alone. In this paper, wemore »introduce a framework for informal reasoning that can be used to think critically about how we teach decision making in the context of engineering capstone design. In addition, we use this paper to briefly describe the ways in which capstone design conference attendees engaged with this framework when it was presented in a workshop during the 2018 Capstone Design Conference. To conclude, we present preliminary recommendations for capstone design educators to integrate more opportunities for diverse and realistic forms of reasoning in their teaching practices.« less