skip to main content


Title: Self-catalyzing photoredox polymerization for recyclable polymer catalysts
We describe a self-catalyzing photoredox polymerization system for the modular generation of macromolecular photocatalysts. Specifically, we designed a photoactive eosin Y-derived monomer that can induce photoelectron/energy transfer, while simultaneously partaking in reversible addition–fragmentation chain transfer polymerization as a monomer, affording polymer catalysts with tunable eosin Y incorporations.  more » « less
Award ID(s):
1904631
NSF-PAR ID:
10233893
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Polymer Chemistry
Volume:
12
Issue:
15
ISSN:
1759-9954
Page Range / eLocation ID:
2205 to 2209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The advantageous material properties that arise from combining non-polar olefin monomers with activated vinyl monomers have led to considerable progress in the development of viable copolymerization strategies. However, unfavorable reactivity ratios during radical copolymerization of the two result in low levels of olefin incorporation, and an abundance of deleterious side reactions arise when attempting to incorporate many polar vinyl monomers via the coordination–insertion pathway typically applied to olefins. We reasoned that design of an activated monomer that is not only well-suited for radical copolymerization with polar vinyl monomers ( e.g. , acrylates) but is also capable of undergoing post-polymerization modification to unveil an olefin repeat unit would allow for the preparation of statistical olefin-acrylate copolymers. Herein, we report monomers fitting these criteria and introduce a post-polymerization modification strategy based on single-electron transfer (SET)-induced decarboxylative radical generation directly on the polymer backbone. Specifically, SET from an organic photocatalyst (eosin Y) to a polymer containing redox-active phthalimide ester units under green light leads to the generation of reactive carbon-centered radicals on the polymer backbone. We utilized this approach to generate statistical olefin-acrylate copolymers by performing the decarboxylation in the presence of a hydrogen atom donor such that the backbone radical is capped by a hydrogen atom to yield an ethylene or propylene repeat unit. This method allows for the preparation of copolymers with previously inaccessible comonomer distributions and demonstrates the promise of applying SET-based transformations to address long-standing challenges in polymer chemistry. 
    more » « less
  2. Photoinduced atom transfer radical polymerization (photo-ATRP) has risen to the forefront of modern polymer chemistry as a powerful tool giving access to well-defined materials with complex architecture. However, most photo-ATRP systems can only generate radicals under biocidal UV light and are oxygen-sensitive, hindering their practical use in the synthesis of polymer biohybrids. Herein, inspired by the photoinduced electron transfer-reversible addition–fragmentation chain transfer (PET-RAFT) polymerization, we demonstrate a dual photoredox/copper catalysis that allows open-air ATRP under green light irradiation. Eosin Y was used as an organic photoredox catalyst (PC) in combination with a copper complex (X–Cu II /L). The role of PC was to trigger and drive the polymerization, while X–Cu II /L acted as a deactivator, providing a well-controlled polymerization. The excited PC was oxidatively quenched by X–Cu II /L, generating Cu I /L activator and PC˙ + . The ATRP ligand (L) used in excess then reduced the PC˙ + , closing the photocatalytic cycle. The continuous reduction of X–Cu II /L back to Cu I /L by excited PC provided high oxygen tolerance. As a result, a well-controlled and rapid ATRP could proceed even in an open vessel despite continuous oxygen diffusion. This method allowed the synthesis of polymers with narrow molecular weight distributions and controlled molecular weights using Cu catalyst and PC at ppm levels in both aqueous and organic media. A detailed comparison of photo-ATRP with PET-RAFT polymerization revealed the superiority of dual photoredox/copper catalysis under biologically relevant conditions. The kinetic studies and fluorescence measurements indicated that in the absence of the X–Cu II /L complex, green light irradiation caused faster photobleaching of eosin Y, leading to inhibition of PET-RAFT polymerization. Importantly, PET-RAFT polymerizations showed significantly higher dispersity values (1.14 ≤ Đ ≤ 4.01) in contrast to photo-ATRP (1.15 ≤ Đ ≤ 1.22) under identical conditions. 
    more » « less
  3. Abstract We have studied effects of metal–dielectric substrates on photopolymerization of [2,2ʹ-Bi-1H-indene]-1,1ʹ-dione-3,3ʹ-diyl diheptanoate (BITh) monomer. We synthetized BITh and spin-coated it onto a variety of dielectric, metallic, and metal–dielectric substrates. The films were exposed to radiation of a UV–Visible Xe lamp, causing photo-polymerization of monomer molecules. The magnitude and the rate of the photo-polymerization were monitored by measuring the strength of the ~ 480 nm absorption band, which existed in the monomer but not in the polymer. Expectedly, the rate of photo-polymerization changed nearly linearly with the change of the pumping intensity. In contrast with our early study of photo-degradation of semiconducting polymer P3HT, the rate of photo-polymerization of BITh is getting modestly higher if the monomer film is deposited on top of silver separated from the monomer by a thin insulating MgF 2 layer preventing a charge transfer. This effect is partly due to a constructive interference of the incident and reflected light waves, as well as known in the literature effects of metal/dielectric substrates on a variety of spectroscopic and energy transfer parameters. At the same time, the rate of photopolymerization is getting threefold larger if monomer is deposited on Ag film directly and charge transfer is allowed. Finally, Au substrates cause modest (~ 50%) enhancement of both monomer film absorption and the rate of photo-polymerization. 
    more » « less
  4. The direct-growth technique was used to synthesize several macromonomers (MMs) employing reversible addition–fragmentation chain transfer (RAFT) polymerization by growing directly from a norbornene-functionalized chain transfer agent (CTA). We aimed to investigate the formation of bisnorbornenyl species resulting from radical termination by combination ( i.e. , coupling) during RAFT polymerization at different monomer conversion values in four types of monomers: styrene, tert -butyl acrylate, methyl methacrylate and N -acryloyl morpholine. Ring-opening metathesis polymerization (ROMP) of these MMs using Grubbs' 3rd generation catalyst (G3) at an MM : G3 ratio of 100 : 1 resulted in the formation of bottlebrush polymers. Analysis by size-exclusion chromatography (SEC) revealed high molar mass shoulders of varying intensities attributed to the incorporation of these bisnorbornenyl species to generate dimeric or higher-order bottlebrush polymer oligomers. The monomer type in the RAFT step heavily influenced the amount of these bottlebrush polymer dimers and oligomers, as did the monomer conversion value in the RAFT step: We found that the ROMP of polystyrene MMs with a target backbone degree of polymerization of 100 produced detectable coupling at ≥20% monomer conversion in the RAFT step, while it took ≥80% monomer conversion to observe coupling in the poly( tert -butyl acrylate) MMs. We did not detect coupling in the poly(methyl methacrylate) MMs, but broadening of the SEC peaks and an increase in dispersity occurred, suggesting the presence of metathesis-active alkene-containing chain ends created by disproportionation. Finally, poly( N -acryloyl morpholine) MMs, even when reaching 90% monomer conversion in the RAFT step, showed no detectable coupling in the bottlebrush polymers. These results highlight the importance of monomer choice and RAFT polymerization conditions in making MMs for ROMP grafting-through to make well-defined bottlebrush polymers. 
    more » « less
  5. null (Ed.)
    Abstract In recent years, advancements in photocatalysis have allowed for a plethora of chemical transformations under milder conditions. Many of these photochemical reactions utilize hydrogen atom transfer processes to obtain desired products. Hydrogen atom transfer processes can follow one of two unique pathways: the first, a direct path and the second, an indirect path. In this paper, we highlight the ability of eosin Y to act as a direct hydrogen atom transfer catalyst from both synthetic and computational chemistry perspectives. 
    more » « less