skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: 32 × 32 silicon photonic MEMS switch with gap-adjustable directional couplers fabricated in commercial CMOS foundry
Award ID(s):
1827633
PAR ID:
10234429
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Optical Microsystems
Volume:
1
Issue:
02
ISSN:
2708-5260
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
  2. The global presence of pharmaceutical pollutants in water sources represents a burgeoning public health concern. Recent studies underscore the urgency of addressing this class of emerging contaminants. In this context, our work focuses on synthesizing a composite material, FexOy/MAF-32, through a streamlined one-pot reaction process, as an adsorbent for diclofenac, an emerging environmental contaminant frequently found in freshwater environments and linked to potential toxicity towards several organisms such as fish and mussels. A thorough characterization was performed to elucidate the structural composition of the composite. The material presents magnetic properties attributed to its superparamagnetic behavior, which facilitates the recovery efficiency of the composite post-diclofenac adsorption. Our study further involves a comparative analysis between the FexOy/MAF-32 and a non-magnetic counterpart, comprised solely of 2-ethylimidazolate zinc polymer. This comparison aims to discern the relative advantages and disadvantages of incorporating magnetic iron oxide nanoparticles in the contaminant removal process facilitated by a coordination polymer. Our findings reveal that even a minimal incorporation of iron oxide nanoparticles substantially enhanced the composite’s overall performance in pollutant adsorption. 
    more » « less
  3. null (Ed.)
  4. Abstract Hydroxylation of wadsleyite, β-(Mg,Fe)2SiO4, is associated with divalent cation defects and well known to affect its physical properties. However, an atomic-scale understanding of the defect structure and hydrogen bonding at high pressures is needed to interpret the influence of water on the behavior of wadsleyite in the mantle transition zone. We have determined the pressure evolution of the wadsleyite crystal symmetry and structure, including all O∙∙∙O interatomic distances, up to 32 GPa using single-crystal X-ray diffraction on two well-characterized, Fe-bearing (Fo90) samples containing 0.25(4) and 2.0(2) wt% H2O. Both compositions undergo a pressure-dependent monoclinic distortion from orthorhombic symmetry above 9 GPa, with the less hydrous sample showing a larger increase in distortion at increased pressures due to the difference in compressibility of the split M3 site in the monoclinic setting arising from preferred vacancy ordering at the M3B site. Although hydrogen positions cannot be modeled from the X-ray diffraction data, the pressure evolution of the longer O1∙∙∙O4 distance in the structure characterizes the primary hydrogen bond length. We observe the hydrogen-bonded O1∙∙∙O4 distance shorten gradually from 3.080(1) Å at ambient pressure to about 2.90(1) Å at 25 GPa, being still much longer than is defined as strong hydrogen bonding (2.5–2.7 Å). Above 25 GPa and up to the maximum pressure of the experiment at 32.5 GPa, the hydrogen-bonded O1∙∙∙O4 distance decreases no further, despite the fact that previous spectroscopic studies have shown that the primary O-H stretching frequencies continuously drop into the regime of strong hydrogen bonding (<3200 cm–1) above ~15 GPa. We propose that the primary O1-H∙∙∙O4 hydrogen bond in wadsleyite becomes highly nonlinear at high pressures based on its deviation from frequency-distance correlations for linear hydrogen bonds. One possible explanation is that the hydrogen position shifts from being nearly on the long O1-O4 edge of the M3 site to a position more above O1 along the c-axis. 
    more » « less