skip to main content


Title: Light–Matter Interaction in Quantum Confined 2D Polar Metals
Abstract

This work is a systematic experimental and theoretical study of the in‐plane dielectric functions of 2D gallium and indium films consisting of two or three atomic metal layers confined between silicon carbide and graphene with a corresponding bonding gradient from covalent to metallic to van der Waals type.k‐space resolved free electron and bound electron contributions to the optical response are identified, with the latter pointing towards the existence of thickness dependent quantum confinement phenomena. The resonance energies in the dielectric functions and the observed epsilon near‐zero behavior in the near infrared to visible spectral range, are dependent on the number of atomic metal layers and properties of the metal involved. A model‐based spectroscopic ellipsometry approach is used to estimate the number of atomic metal layers, providing a convenient route over expensive invasive characterization techniques. A strong thickness and metal choice dependence of the light–matter interaction makes these half van der Waals 2D polar metals attractive for quantum engineered metal films, tunable (quantum‐)plasmonics and nano‐photonics.

 
more » « less
Award ID(s):
2002651
NSF-PAR ID:
10454583
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Functional Materials
Volume:
31
Issue:
4
ISSN:
1616-301X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The transition metal selenides M1+ySe2(M = V, Ti) have intriguing quantum properties, which make them target materials for controlling properties by thinning them to the ultrathin limit. An appropriate approach for the synthesis of such ultrathin films is by molecular beam epitaxy. Here, it is shown that such synthesized V‐ and Ti‐Se2films can undergo a compositional change by vacuum annealing. Combined scanning tunneling and photoemission spectroscopy is used to determine compositional and structural changes of ultrathin films as a function of annealing temperature. Loss of selenium from the film is accompanied by a morphology change of monolayer height islands to predominantly bilayer height. In addition, crystal periodicity and atomic structure changes are observed. These changes are consistent with a transition from a layered transition metal dichalcogenide (TMDC) to ordered intercalation compounds with V or Ti intercalated in between two layers of their respective TMDCs. These observations may clear up misconception of the nature of previously reported high‐temperature grown transition metal selenides. More significantly, the demonstrated control of the formation of intercalation compounds is a key step toward modifying properties in van der Waals systems and toward expanding material systems for van der Waals heterostructures.

     
    more » « less
  2. Abstract

    Perovskite light‐emitting diodes (PeLEDs) are advancing because of their superior external quantum efficiencies (EQEs) and color purity. Still, additional work is needed for blue PeLEDs to achieve the same benchmarks as the other visible colors. This study demonstrates an extremely efficient blue PeLED with a 488 nm peak emission, a maximum luminance of 8600 cd m−2, and a maximum EQE of 12.2% by incorporating the double‐sided ethane‐1,2‐diammonium bromide (EDBr2) ligand salt along with the long‐chain ligand methylphenylammonium chloride (MeCl). The EDBr2successfully improves the interaction between 2D perovskite layers by reducing the weak van der Waals interaction and creating a Dion–Jacobson (DJ) structure. Whereas the pristine sample (without EDBr2) is inhibited by small stacking number (n) 2D phases with nonradiative recombination regions that diminish the PeLED performance, adding EDBr2successfully enables better energy transfer from smallnphases to largernphases. As evidenced by photoluminescence (PL), scanning electron microscopy (SEM), and atomic force microscopy (AFM) characterization, EDBr2improves the morphology by reduction of pinholes and passivation of defects, subsequently improving the efficiencies and operational lifetimes of quasi‐2D blue PeLEDs.

     
    more » « less
  3. Abstract

    Large‐scale synthesis of van der Waals (vdW) metal–organic framework (MOF) nanosheets with controlled crystallinity and interlayer coupling strength is one of the bottlenecks in 2D materials that has limited its successful transition to large‐scale applications. Here, scalable synthesis of mBDC (m = Zn and Cu) 2D MOFs at large scales through a biphase method is demonstrated. The results show replacing water molecules with pyridine eliminates hydrogen bond formation at metal cluster sites. This prohibits tight coupling across adjacent MOF layers and sustains controllable 2D vdW MOF growth. It is further shown that control over the growth speed, crystallinity, and thickness can be achieved by addition of a controlled amount of triethylamine and formic acid to achieve highly crystalline vdW MOF nanosheets with extraordinarily high aspect ratio. The described synthesis route can easily be scaled up for large‐scale production either by deposition onto desired substrates or in crystalline layered powder form. Owing to its large lateral size, vdW nature, and high crystallinity, it is possible to perform atomic force microscopy, Kelvin probe force microscopy, and Raman measurements on the 2D MOFs. The results not only establish their vibrational properties and layer‐dependent responses but also show striking differences from other 2D inorganic materials.

     
    more » « less
  4. Abstract

    Two-dimensional (2D) materials such as semiconductors and ferroelectrics are promising for future energy-efficient logic devices because of their extraordinary electronic properties at atomic thickness. In this work, we investigated a van der Waals heterostructure composited of 2D semiconducting MoS2and 2D ferroelectric CuInP2S6(CIPS) and NiPS3. Instead of using 2D ferroelectrics as conventional gate dielectric layers, here we applied CIPS and NiPS3as a ferroelectric capping layer, and investigated a long-distance coupling effect with the gate upon the sandwiched 2D MoS2channels. Our experimental results showed an outstanding enhancement of the electrodynamic gating in 2D MoS2transistors, represented by a significant reduction of subthreshold swing at room temperature. This was due to the coupling-induced polarization of 2D ferroelectrics at 2D semiconductor surface which led to an effective and dynamic magnification of the gate capacitance. Meanwhile, the electrostatic gating was remained steady after adding the ferroelectric capping layer, providing ease and compatibility for further implementation with existing circuit and system design. Our work demonstrates the long-distance coupling effect of 2D ferroelectrics in a capping architecture, reveals its impacts from both electrodynamic and electrostatic perspectives, and expands the potential of 2D ferroelectrics to further improve the performance of energy-efficient nanoelectronics.

     
    more » « less
  5. Abstract The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling and easy access for material growth. Group VI element tellurium is an unintentionally p-type doped narrow bandgap semiconductor featuring a one-dimensional chiral atomic structure which holds great promise for next-generation electronic, optoelectronic, and piezoelectric applications. In this paper, we first review recent progress in synthesizing atomically thin Te two-dimensional (2D) films and one-dimensional (1D) nanowires. Its applications in field-effect transistors and potential for building ultra-scaled Complementary metal–oxide–semiconductor (CMOS) circuits are discussed. We will also overview the recent study on its quantum transport in the 2D limit and progress in exploring its topological features and chiral-related physics. We envision that the breakthrough in obtaining high-quality 2D Te films will inspire a revisit of the fundamental properties of this long-forgotten material in the near future. 
    more » « less