skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Recent advances in oxidative allylic C–H functionalization via group IX-metal catalysis
Allylic substitution, pioneered by the work of Tsuji and Trost, has been an invaluable tool in the synthesis of complex molecules for decades. An attractive alternative to allylic substitution is the direct functionalization of allylic C–H bonds of unactivated alkenes, thereby avoiding the need for prefunctionalization. Significant early advances in allylic C–H functionalization were made using palladium catalysis. However, Pd-catalyzed reactions are generally limited to the functionalization of terminal olefins with stabilized nucleophiles. Insights from Li, Cossy, and Tanaka demonstrated the utility of RhCp x catalysts for allylic functionalization. Since these initial reports, a number of key intermolecular Co-, Rh-, and Ir-catalyzed allylic C–H functionalization reactions have been reported, offering significant complementarity to the Pd-catalyzed reactions. Herein, we report a summary of recent advances in intermolecular allylic C–H functionalization via group IX-metal π-allyl complexes. Mechanism-driven development of new catalysts is highlighted, and the potential for future developments is discussed.  more » « less
Award ID(s):
1700982
PAR ID:
10234859
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Chemical Communications
Volume:
56
Issue:
87
ISSN:
1359-7345
Page Range / eLocation ID:
13287 to 13300
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Allylic C–H functionalization catalysed by group 9 Cp* transition-metal complexes has recently gained significant attention. These reactions have expanded allylic C–H functionalization to include di- and trisubstituted olefins, and a broad range of coupling partners. More specifically, several catalytic C–N, C–O, and C–C bond forming allylic C–H functionalization reactions have been reported, proceeding via MCp*-π-allyl intermediates. Herein we present an overview of these reactions by mechanistic paradigm. We also place this information in context of recent advances, as well as, limitations that remain for this class of reactions. 
    more » « less
  2. Abstract Mono‐N‐protected amino acids (MPAAs) are increasingly common ligands in Pd‐catalyzed C−H functionalization reactions. Previous studies have shown how these ligands accelerate catalytic turnover by facilitating the C−H activation step. Here, it is shown that MPAA ligands exhibit a second property commonly associated with ligand‐accelerated catalysis: the ability to support catalytic turnover at substoichiometric ligand‐to‐metal ratios. This catalytic role of the MPAA ligand is characterized in stoichiometric C−H activation and catalytic C−H functionalization reactions. Palladacycle formation with substrates bearing carboxylate and pyridine directing groups exhibit a 50–100‐fold increase in rate when only 0.05 equivalents of MPAA are present relative to PdII. These and other mechanistic data indicate that facile exchange between MPAAs and anionic ligands coordinated to PdIIenables a single MPAA to support C−H activation at multiple PdIIcenters. 
    more » « less
  3. N-heterocycles are ubiquitous in natural products, pharmaceuticals, organic materials, and numerous functional molecules. Among the current synthetic approaches, transition metal-catalyzed C–H functionalization has gained considerable attention in recent years due to its advantages of simplicity, high atomic economy, and the ready availability of starting materials. In the field of N-heterocycle synthesis via C–H functionalization, nickel has been recognized as one of the most important catalysts. In this review, we will introduce nickel-catalyzed intramolecular and intermolecular pathways for N-heterocycle synthesis from 2008 to 2021. 
    more » « less
  4. Abstract Indole is one of the most important heterocycles in organic synthesis, natural products, and drug discovery. Recently, tremendous advances in the selective functionalization of indoles have been reported. Although the most important advances have been powered by transition metal catalysis, exceedingly useful methods in the absence of transition metals have also been reported. In this review, we provide an overview of functionalization reactions of indoles that have been published in the last years with a focus on the most recent advances, aims, and future trends. The review is organized by the positional selectivity and type of methods used for functionalization. In particular, we discuss major advances in transition‐metal‐catalyzed C−H functionalization at the classical C2/C3 positions, transition‐metal‐catalyzed C−H functionalization at the remote C4/C7 positions, transition‐metal‐catalyzed cross‐coupling, and transition‐metal‐free functionalization. magnified image 
    more » « less
  5. Abstract A palladium‐catalyzed dearomativesyn‐1,4‐oxyamination protocol using non‐activated arenes has been developed. This one‐pot procedure utilizes arenophile chemistry, and the correspondingpara‐cycloadducts are treated with oxygen nucleophiles via formal allylic substitution, providing direct access tosyn‐1,4‐oxyaminated products. The reaction conditions permit a range of arenes, as well as different O‐nucleophiles, such as oximes and benzyl alcohols. Moreover, this process was established in an asymmetric fashion, delivering products with high enantioselectivity. The dearomatized products are amenable to a multitude of further derivatizations ranging from olefin chemistry to C−H activation, giving rise to a diverse set of new functionalities. Overall, this dearomative functionalization offers rapid and controlled formation of molecular complexity, enabling straightforward access to functionalized small molecules from simple and readily available arenes. 
    more » « less