skip to main content


Title: Adsorption and reaction pathways of 7-octenoic acid on copper
The surface structure and reaction pathways of 7-octenoic acid are studied on a clean copper substrate in ultrahigh vacuum using a combination of reflection–absorption infrared spectroscopy, X-ray photoelectron spectroscopy, temperature-programmed desorption and scanning-tunneling microscopy, supplemented by first-principles density functional theory calculations. 7-Octenoic acid adsorbs molecularly on copper below ∼260 K in a flat-lying configuration at low coverages, becoming more upright as the coverage increases. It deprotonates following adsorption at ∼300 K to form an η 2 -7-octenoate species. This also lies flat at low coverages, but forms a more vertical self-assembled monolayer as the coverage increases. Heating causes the 7-octenoate species to start to tilt, which produces a small amount of carbon dioxide at ∼550 K and some hydrogen in a peak at ∼615 K ascribed to the reaction of these tilted species. The majority of the decarbonylation occurs at ∼650 K when CO 2 and hydrogen evolve simultaneously. Approximately half of the carbon is deposited on the surface as oligomeric species that undergo further dehydrogenation to evolve more hydrogen at ∼740 K. This leaves a carbonaceous layer on the surface, which contains hexagonal motifs connoting the onset of graphitization of the surface.  more » « less
Award ID(s):
2020525
NSF-PAR ID:
10234885
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
23
Issue:
10
ISSN:
1463-9076
Page Range / eLocation ID:
5834 to 5844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The effect of the terminal groups on the nature of the films formed by the thermal decomposition of carboxylic acids on copper is studied in ultrahigh vacuum using temperature-programmed desorption (TPD), scanning tunneling microscopy (STM) and Auger electron spectroscopy (AES). The influence of the presence of vinyl or alkynyl terminal groups and chain length is studied using heptanoic, octanoic, 6-heptenoic, 7-octenoic, 6-heptynoic and 7-octynoic acids. The carboxylic acids form strongly bound carboxylates following adsorption on copper at room temperature, and thermally decompose between ∼500 and 650 K. Previous work has shown that this occurs by the carboxylate plane tilting towards the surface to eliminate carbon dioxide and deposit a hydrocarbon fragment. The fragment can react to evolve hydrogen or form oligomeric species on the surface, where the amount of carbon increases for carboxylic acids that contain terminal functional groups that can anchor to the surface. These results will be used to compare with the carbonaceous films formed by the mechanochemical decomposition of carboxylic acids on copper, which occurs at room temperature. This is expected to lead to less carbon being deposited on the surface than during thermal decomposition. 
    more » « less
  2. null (Ed.)
    Reflection absorption infrared spectroscopy and temperature programmed desorption were used to study the adsorption of acrolein, its partial hydrogenation products, propanal and 2-propenol, and its full hydrogenation product, 1-propanol on the Ag(111) surface. Each molecule adsorbs weakly to the surface and desorbs without reaction at temperatures below 220 K. For acrolein, the out-of plane bending modes are more intense than the CO stretch at all coverages, indicating that the molecular plane is mainly parallel to the surface. The two alcohols, 2-propenol and 1-propanol, have notably higher desorption temperatures than acrolein and display strong hydrogen bonding in the multilayers as revealed by a broadened and redshifted O–H stretch. For 1-propanol, annealing the surface to 180 K disrupts the hydrogen-bonding to produce unusally narrow peaks, including one at 1015 cm −1 with a full width at half maximum of 1.1 cm −1 . This suggests that 1-propanol forms a highly orderded monolayer and adsorbs as a single conformer. For 2-propenol, hydrogen bonding in the multilayer correlates with observation of the CC stretch at 1646 cm −1 , which is invisible for the monolayer. This suggests that for monolayer coverages, 2-propenol bonds with the CC bond parallel to the surface. Similarly, the CO stretch of propanal is very weak for low coverages but becomes the largest peak for the multilayer, indicating a change in orientation with coverage. 
    more » « less
  3. Abstract

    Chiral modifiers of heterogeneous catalysts can function as activity promotors to minimize the influence of unmodified sites on the enantiomeric excess to obtain highly enantioselective catalysts. However, the origin on this effect is not well understood. It is investigated using a model catalyst of R‐(+)‐1‐(1‐naphthyl)‐ethylamine (R‐1‐NEA)/Pd(111) for the hydrogenation of methyl pyruvate (MP) to methyl lactate (ML). The activity of the model catalyst remains constant for multiple turnovers. No rate enhancement is found for R‐1‐NEA coverages below ∼0.5 monolayer (ML), but a significant increase is found at R‐1‐NEA coverages of ∼0.75 ML, with a rate approximately twice that of the unmodified catalyst. This is investigated using infrared spectroscopy to distinguish between MP monomers and dimers. MP titration experiments with hydrogen show a half‐order hydrogen pressure dependence, with the monomer reacting at twice the rate as the dimer. It is found that the dimer is the most abundant species on clean Pd(111), but the ratio of monomers to dimers increases as the R‐1‐NEA coverage increases due to surface crowding. The monomeric species is also found to be more stable on the crowded surface than on clean Pd(111); the chiral modifier also serves to stabilize the reactant. Finally, this model nicely explains the unusual 1‐NEA‐covergae dependence of the reactivity.

     
    more » « less
  4. The adsorption of acrolein and its hydrogenation products propanal, 1-propanol, and 2-propenol on Cu(111) was studied by reflection absorption infrared spectroscopy (RAIRS) and temperature-programmed desorption (TPD). The experimental RAIR spectra were obtained by adsorbing multilayers of each molecule at 85 K and then annealing the surface up to 200 K to desorb the multilayer and produce the most stable monolayer structure on the surface. Each of the four molecules adsorbs weakly to the surface and desorbs at temperatures below 225 K. Compared to acrolein and propanal, the two alcohols, 2-propenol and 1-propanol, have notably higher desorption temperatures and broadened and redshifted O-H stretches that reveal strong hydrogen bonding in the multilayers. Upon annealing to 160 K, the OH stretches of both 2-propenol and 1-propanol disappear, indicating the hydrogen bonding in the multilayers is not present in the monolayers. For 2-propenol, the hydrogen bonding in the multilayer correlates with the observation of the CC stretch at 1647 cm −1 , which is invisible for the monolayer. This suggests that the CC bond is parallel to the surface for monolayer coverages of 2-propenol. Similarly, for propanal, the CO stretch peak at 1735 cm −1 compared to those at 1671 and 1695 cm −1 is very weak at low coverages but becomes the most prominent peak for the multilayer, indicating a change in molecular orientation. For acrolein, the out-of-plane bending modes are more intense than the CO stretch at submonolayer coverages, indicating that the molecular plane is mainly parallel to the surface. In contrast, the opposite intensity trend was observed for multilayer acrolein, suggesting that the CO bonds are tilted away from the surface. 
    more » « less
  5. Abstract. Rate-driving force relationships, known as Brønsted-Evans Polanyi (BEP) relations, are central to many methods for predicting the performance of heterogeneous catalysts and electrocatalysts. Methods such as Tafel plots and ‘volcano’ analyses often assume the effect of adsorbate coverage on reaction rate across different materials is constant and known. Here we use UV-visible spectroscopy to test these assumptions, by measuring rates of net hydrogen atom transfer from colloidal cerium oxide nanoparticles (nanoceria) to organic reagents at varying surface CeO–H bond strengths and surface coverages. The resulting rate constants follow a linear BEP relationship, ∆log(k)=[alpha]∆log(Keq), across two sizes of nanoceria, two organic reagents, and a ~10 kcal mol-1 range of CeO–H bond strengths. Interestingly, the Brønsted slope is only 0.2, demonstrating that the rate constants are far less insensitive to CeO–H bond strength, than would commonly be assumed for a heterogeneous nanomaterial. Furthermore, we observe a Brønsted slope >1 when altering the reaction driving force via the organic reagent bond strength instead of that of CeO–H. The implications of these Brønsted slopes for either concerted or stepwise mechanisms are discussed. To our knowledge, these are the first solution-phase measurements of BEP relationships for hydrogen coverage on a (nano)material. 
    more » « less