skip to main content


Title: Enhancing Performance of GaAs Photodiodes via Monolithic Integration of Self‐Formed Graphene Quantum Dots and Antireflection Surface Texturing
  more » « less
NSF-PAR ID:
10211460
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Photonics Research
Volume:
2
Issue:
3
ISSN:
2699-9293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A simple room‐temperature process of depositing MXene on a III‐V structure with embedded 2D electron gas (2DEG) is used, which results in a large area, , photodetector (PD) device that greatly outperforms vacuum deposited Ti/Au metal‐semiconductor‐metal (MSM) PD's. By co‐optimizing properties of 2D MXene contacts and the III‐V material heterojunctions, this device sets new operating records with responsivity up to 1.04 A W1at low optical powers, corresponding to >230% internal quantum efficiency, dark current of 50 , >105.6‐dB dynamic range, and 25–150 ps response time, which improves the previous MXene‐Semiconductor‐MXene responsivity by >2.7 times and is 7 × 103–−106times faster compared to other MXene‐based PDs. This is achieved by enhancing the Schottky barrier height by forming a Van der Waals (vdW) heterojunction between a wide bandgap AlGaAs surface layer and spin coatedTi3C2Tzelectrodes. A layered architecture transports the optically generated electrons to a 2DEG channel at the GaAs/AlGaAs heterointerface, where they are rapidly collected. The landscaped electric field pushes the slow holes to an underlying low temperature‐grown GaAs (LT‐GaAs) region where they recombine. The proposed Schottky‐2DEG Photoconductor‐Schottky model for device operation shows how this device circumvents the canonical limitations of gain‐bandwidth product, and carrier transit time, while replacing the need for vacuum deposition of gold or other precious metals.

     
    more » « less
  2. Abstract

    Atomically thin 2D materials are good templates to grow organic semiconductor thin films with desirable features. However, the 2D materials typically exhibit surface roughness and spatial charge inhomogeneity due to nonuniform doping, which can affect the uniform assembly of organic thin films on the 2D materials. A hybrid template is presented for preparation of highly crystalline small‐molecule organic semiconductor thin film that is fabricated by transferring graphene onto a highly ordered self‐assembled monolayer. This hybrid graphene template has low surface roughness and spatially uniform doping, and it yields highly crystalline fullerene thin films with grain sizes >300 nm, which is the largest reported grain size for C60thin films on 2D materials. A graphene/fullerene/pentacene phototransistor fabricated directly on the hybrid template has five times higher photoresponsivity than a phototransistor fabricated on a conventional graphene template supported by a SiO2wafer.

     
    more » « less
  3. Abstract

    The recently proposed concept of graphene photodetectors offers remarkable properties such as unprecedented compactness, ultrabroadband detection, and an ultrafast response speed. However, owing to the low optical absorption of pristine monolayer graphene, the intrinsically low responsivity of graphene photodetectors significantly hinders the development of practical devices. To address this issue, numerous efforts have thus far been made to enhance the light–graphene interaction using plasmonic structures. These approaches, however, can be significantly advanced by leveraging the other critical aspect of graphene photoresponsivity enhancement—electrical junction control. It has been reported that the dominant photocarrier generation mechanism in graphene is the photothermoelectric (PTE) effect. Thus, the two energy conversion mechanisms involved in the graphene photodetection process are light-to-heat and heat-to-electricity conversions. In this work, we propose a meticulously designed device architecture to simultaneously enhance the two conversion efficiencies. Specifically, a gap plasmon structure is used to absorb a major portion of the incident light to induce localized heating, and a pair of split gates is used to produce a p-n junction in graphene to augment the PTE current generation. The gap plasmon structure and the split gates are designed to share common key components so that the proposed device architecture concurrently realizes both optical and electrical enhancements. We experimentally demonstrate the dominance of the PTE effect in graphene photocurrent generation and observe a 25-fold increase in the generated photocurrent compared to the un-enhanced cases. While further photocurrent enhancement can be achieved by applying a DC bias, the proposed device concept shows vast potential for practical applications.

     
    more » « less
  4.  
    more » « less
  5. This paper presents a 3D model of a terahertz photoconductive antenna (PCA) using black phosphorus, an emerging 2D anisotropic material, as the semiconductor layer. This work aims at understanding the potential of black phosphorus (BP) to advance the signal generation and bandwidth of conventional terahertz (THz) PCAs. The COMSOL Multiphysics package, based on the finite element method, is utilized to model the 3D BP PCA emitter using four modules: the frequency domain RF module to solve Maxwell’s equations, the semiconductor module to calculate the photocurrent, the heat transfer in solids module to calculate the temperature variations, and the transient RF module to calculate the THz radiated electric field pulse. The proposed 3D model is computationally intensive where the PCA device includes thin layers of thicknesses ranging from nano- to microscale. The symmetry of the configuration was exploited by applying the perfect electric and magnetic boundary conditions to reduce the computational domain to only one quarter of the device in the RF module. The results showed that the temperature variation due to the conduction of current induced by the bias voltage increased by only 0.162 K. In addition, the electromagnetic power dissipation in the semiconductor due to the femtosecond laser source showed an increase in temperature by 0.441 K. The results show that the temperature variations caused the peak of the photocurrent to increase by∼<#comment/>3.4%<#comment/>and∼<#comment/>10%<#comment/>, respectively, under a maximum bias voltage of 1 V and average laser power of 1 mW. While simulating the active area of the antenna provided accurate results for the optical and semiconductor responses, simulating the thermal effect on the photocurrent requires a larger computational domain to avoid false rise in temperature. Finally, the simulated THz signal generation electric field pulse exhibits a trend in increasing the bandwidth of the proposed BP PCA compared with the measured pulse of a reference commercial LT-GaAs PCA. Enhancing signal generation and bandwidth will improve THz imaging and spectroscopy for biomedical and material characterization applications.

     
    more » « less