Asymmetric allylic alkylation (AAA) is a powerful method for the formation of highly useful, non‐racemic allylic compounds. Here we present a complementary enantioselective process that generates allylic lactones via π‐acid catalysis. More specifically, a catalytic enantioselective dehydrative lactonization of allylic alcohols using a novel PdII‐catalyst containing the imidazole‐based
The first two highly enantioselective palladium‐catalyzed allylic alkylations with benzylic nucleophiles, activated with Cr(CO)3, have been developed. These methods enable the enantioselective synthesis of α‐2‐propenyl benzyl motifs, which are important scaffolds in natural products and pharmaceuticals. A variety of cyclic and acyclic allylic carbonates are competent electrophilic partners furnishing the products in excellent enantioselectivity (up to 99 %
- PAR ID:
- 10236122
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie
- Volume:
- 128
- Issue:
- 7
- ISSN:
- 0044-8249
- Format(s):
- Medium: X Size: p. 2572-2576
- Size(s):
- p. 2572-2576
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract P ,N ‐ligand (S )‐StackPhos is reported. The high‐yielding reactions are operationally simple to perform with enantioselectivities up to 99 %ee . This strategy facilitates the replacement of a poor leaving group with what would ostensibly be a better leaving group in the product avoiding complications arising from racemization by equilibration. -
Abstract Asymmetric allylic alkylation (AAA) is a powerful method for the formation of highly useful, non‐racemic allylic compounds. Here we present a complementary enantioselective process that generates allylic lactones via π‐acid catalysis. More specifically, a catalytic enantioselective dehydrative lactonization of allylic alcohols using a novel PdII‐catalyst containing the imidazole‐based
P ,N ‐ligand (S )‐StackPhos is reported. The high‐yielding reactions are operationally simple to perform with enantioselectivities up to 99 %ee . This strategy facilitates the replacement of a poor leaving group with what would ostensibly be a better leaving group in the product avoiding complications arising from racemization by equilibration. -
Abstract The first highly enantioselective, diastereoselective, and regioselective [2,3]‐rearrangement of iodonium ylides has been developed as a general solution to catalytic onium ylide rearrangements. In the presence of a chiral copper catalyst, substituted allylic iodides couple with α‐diazoesters to generate metal‐coordinated iodonium ylides, which undergo [2,3]‐rearrangements with high selectivities (up to >95:5 r.r., up to >95:5 d.r., and up to 97 %
ee ). The enantioenriched iodoester products can be converted stereospecifically into a variety of onium ylide rearrangement products, as well as compounds that are not accessible by classical onium ylide rearrangements. -
Abstract A protocol for palladium‐catalyzed dearomative functionalization of simple, nonactivated arenes with Grignard reagents has been established. This one‐pot method features a visible‐light‐mediated [4+2] cycloaddition between an arene and an arenophile, and subsequent palladium‐catalyzed allylic substitution of the resulting cycloadduct with a Grignard reagent. A variety of arenes and Grignard reagents can participate in this process, forming carboaminated products with exclusive
syn ‐1,4‐selectivity. Moreover, the dearomatized products are amenable to further elaborations, providing functionalized alicyclic motifs and pharmacophores. For example, naphthalene was converted into sertraline, one of the most prescribed antidepressants, in only four operations. Finally, this process could also be conducted in an enantioselective fashion, as demonstrated with the desymmetrization of naphthalene. -
Abstract A protocol for palladium‐catalyzed dearomative functionalization of simple, nonactivated arenes with Grignard reagents has been established. This one‐pot method features a visible‐light‐mediated [4+2] cycloaddition between an arene and an arenophile, and subsequent palladium‐catalyzed allylic substitution of the resulting cycloadduct with a Grignard reagent. A variety of arenes and Grignard reagents can participate in this process, forming carboaminated products with exclusive
syn ‐1,4‐selectivity. Moreover, the dearomatized products are amenable to further elaborations, providing functionalized alicyclic motifs and pharmacophores. For example, naphthalene was converted into sertraline, one of the most prescribed antidepressants, in only four operations. Finally, this process could also be conducted in an enantioselective fashion, as demonstrated with the desymmetrization of naphthalene.