Ni‐rich LiNi0.8Co0.1Mn0.1O2(NCM811) has been considered as a promising cathode material for high energy density lithium‐ion batteries. However, it experiences undesirable interfacial side‐reactions with the electrolyte, which lead to a rapid capacity decay. In this work, a homogeneous precipitation method is proposed for forming a uniform silicon dioxide (SiO2) coating on the NCM811 surface. The strong Si−O network provided a stable protective layer between the NCM811 active material and electrolyte to improve the electrochemical stability. As a result, the NCM811@SiO2cathode showed superior cycling stability (84.9 % after 100 cycles at 0.2 C) and rate capability (142.7 mA h g−1at 5 C) compared to the pristine NCM811 cathode (56.6 % after 100 cycles, 127.9 mA h g−1at 5 C). Moreover, the SiO2coating effectively suppressed voltage decay and pulverization of the NCM811 particles during long term cycling. This uniform coating technique offers a viable approach for stabilizing Ni‐rich cathode materials for high‐energy density lithium‐ion batteries.
Macroporous Nb2O5(MP‐Nb2O5) has been synthesized using dispersed polystyrene microspheres (PS) as template followed by annealing in air. The structural characterization showed that the diameters of the macropores are around 200 nm and the average particle size of the composition is 20–50 nm. XPS revealed the presence of low valence Nb4+and oxygen vacancies on the surface of the resulting product introduced during the pyrolysis of PS. Such a unique combination of macroporous nanostructure and tetravalent niobium ions enables the electrode with superior lithium ion insertion properties, such as high specific capacity (≈190 mA h g−1at 0.5C) and rate capability. Even at a current density of 1.6 A g−1, an average capacity of 129.2 mA h g−1can still be obtained. These findings demonstrate MP‐Nb2O5is a promising candidate for high‐rate lithium ion storage applications.
more » « less- NSF-PAR ID:
- 10236125
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemNanoMat
- Volume:
- 2
- Issue:
- 7
- ISSN:
- 2199-692X
- Page Range / eLocation ID:
- p. 675-680
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Anatase TiO2is a promising anode material for lithium‐ion batteries (LIBs) owing to its low cost and stability. However, the intrinsically kinetic limits seriously hindered its lithium‐ion storage capability. Here we present that anatase TiO2with rich oxygen vacancies can enhance its lithium‐ion storage performance. We synthesize anatase TiO2with well‐retained hierarchical structure by annealing the H2Ti5O11·3H2O yolk‐shell spheres precursor in nitrogen atmosphere. EPR and XPS data evidence that the oxygen‐deficient environment could generate abundant oxygen vacancies in the as‐derived anatase TiO2, which leads to improved electron conductivity and reduced charge‐transfer resistance. The rich oxygen vacancies and high structural integrity of the hierarchical yolk‐shell spheres enable the as‐derived anatase TiO2yolk‐shell spheres with a high specific capacity of 280 mAh g−1at 100 mA g−1and 71% of capacity retention after 5000 cycles at 2 A g−1.
-
Abstract Titanium dioxide (TiO2) is a promising electrode material for reversible lithium storage. However, the poor electronic conductivity, sluggish diffusivity, and intrinsic kinetics limit hinder its fast lithium storage capability. Here we present that the oxygen‐deficient TiO2hierarchical spheres can address the issues for high capacity, long‐term lithium‐ion battery anode. First‐principles calculations show that introducing oxygen vacancies to anatase TiO2can reduce the bandgap, thus improving the electronic conductivity and further the lithium storage properties of TiO2. By annealing TiO2/H2Ti5O11⋅3H2O hierarchical spheres precursor in nitrogen, accompanying with the phase transfer process, the growth of TiO2crystallites is restricted due to the generation of residual carbon species, resulting in a well maintained hierarchical spherical structure. Rich oxygen vacancies are generated in the oxygen‐deficient environment and evidenced by EPR, XPS, and UV‐Vis spectra, which enable the TiO2hierarchical spheres reduced bandgap. The oxygen vacancies in the as‐obtained TiO2hierarchical spheres together with the high structural integrity of the hierarchical spheres gives rise to superior lithium storage properties including a high specific capacity of 282 mAh g−1at 200 mA g−1, and long‐term cycling stability with a capacity retention of 85.2 % at 4 A g−1over 10000 cycles.
-
Nickel phosphide (Ni 5 P 4 ) nanosheets are synthesized using in situ chemical vapor deposition of P on Ni foam. The thickness of the as-synthesized Ni 5 P 4 film is determined to be ∼5 nm, using atomic force microscopy (AFM). The small thickness shortens the diffusion path of Li ions and results in fast ion transport. In addition, the 2D Ni 5 P 4 nanosheets seamlessly connect to the Ni foam, which facilitates electron transfer between Ni 5 P 4 and the Ni current collector. Therefore, the binder/carbon free-nickel supported Ni 5 P 4 shows fast rate performance as an anode for lithium-ion batteries (LIBs). The specific capacity of 2D Ni 5 P 4 is obtained as 600 mA h g −1 at a cycling rate of 0.1C, approaching the theoretical capacity of 768 mA h g −1 . Even at a rate of 0.5C, the capacity remains as 450 mA h g −1 over 100 cycles. A capacity >100 mA h g −1 is retained at a very high rate of 20C. Ni 5 P 4 also exhibits a low voltage of ∼0.5 V with respect to Li metal, which makes it a suitable negative electrode for LIBs. In operando 31 P NMR and 7 Li NMR are employed to probe the lithiation and de-lithiation mechanisms upon electrochemical cycling.more » « less
-
Germanium (Ge) is deemed as one of the most promising alloying anodes for rechargeable lithium‐ion batteries (LIBs) due to its large theoretical capacity, high electrical conductivity, fast lithium‐ion diffusivity, and mechanical robustness. However, Ge‐based anodes suffer from large volume changes during lithiation and delithiation, which can deteriorate their electrochemical performance rapidly. Herein, the large volume change issue is effectively addressed using an asymmetric membrane structure that is prepared using a phase‐inversion method in combination with hydrogen peroxide etching and surface coating. The asymmetric Ge membrane etched by ≈30 wt% H2O2at 90 °C for 30 s demonstrates a capacity retention higher than 80% in 50 cycles at 160 mA g−1. Coating the H2O2‐etched Ge membrane with carbonaceous membranes can further improve the retention up to 95% in 50 cycles at 160 mA g−1, whereas ≈100% capacity of 700 mAh g−1can be maintained in 170 cycles at 400 mA g−1. A combination of electron microscopy, spectrophotometry, and X‐ray analyses confirms the electrochemical performance of asymmetric Ge membranes as the LIB anode can be significantly affected by membrane geometry, the duration of hydrogen peroxide etching, carbonaceous membrane coating, and Ge concentration.