skip to main content


Title: A Molecular Capsule with Revolving Doors Partitioning Its Inner Space
Abstract

Covalent capsule1was designed to include two molecular baskets linked with three mobile pyridines tucked into its inner space. On the basis of both theory (DFT) and experiments (NMR and X‐ray crystallography), we found that the pyridine “doors” split the chamber (380 Å3) of1so that two equally sizeable compartments (190 Å3) became joined through a conformationally flexible aromatic barrier. The compartments of such unique host could be populated with CCl4(88 Å3; PC=46 %), CBr4(106 Å3; 56 %) or their combination CCl4/CBr4(PC=51 %), with thermodynamic stabilities ΔG° tracking the values of packing coefficients (PC). Halogen (C−X⋅⋅⋅π) and hydrogen bonding (C−H⋅⋅⋅X) contacts held the haloalkane guests in the cavities of1. The consecutive complexations were found to occur in a negative allosteric manner, which we propose to result from the induced‐fit mode of complexation. Newly designed1opens a way for probing the effects of inner conformational dynamics on noncovalent interactions, reactivity and intramolecular translation in confined spaces of hollow molecules.

 
more » « less
NSF-PAR ID:
10236420
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chemistry – A European Journal
Volume:
26
Issue:
69
ISSN:
0947-6539
Page Range / eLocation ID:
p. 16480-16485
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate “instructs” the host to change its shape after complexation, while CS asserts that a guest “selects” the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsuleM1, encompassing two conformersM1(+) andM1(−), trap CX4(X=Cl, Br) to give CX4M1(+) and CX4M1(−), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4would, at its lower concentrations, bindM1via aM1(+)→M1(−)→CBr4M1(−) pathway corresponding to conformational selection. ForM1complexing CCl4though, data from 2D EXSY measurements and 1D NMR line‐shape analysis suggested that lower CCl4concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.

     
    more » « less
  2. Abstract

    Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate “instructs” the host to change its shape after complexation, while CS asserts that a guest “selects” the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsuleM1, encompassing two conformersM1(+) andM1(−), trap CX4(X=Cl, Br) to give CX4M1(+) and CX4M1(−), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4would, at its lower concentrations, bindM1via aM1(+)→M1(−)→CBr4M1(−) pathway corresponding to conformational selection. ForM1complexing CCl4though, data from 2D EXSY measurements and 1D NMR line‐shape analysis suggested that lower CCl4concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.

     
    more » « less
  3. Abstract

    3,3′,5,5′‐Tetra‐tert‐butyl‐2′‐sulfanyl[1,1′‐biphenyl]‐2‐ol (H2[tBu4OS]) was prepared in 24 % yield overall from the analogous biphenol using standard techniques. Addition of H2[tBu4OS] to Mo(NAr)(CHCMe2Ph)(2,5‐dimethylpyrrolide)2led to formation of Mo(NAr)(CHCMe2Ph)[tBu4OS], which was trapped with PMe3to give Mo(NAr)(CHCMe2Ph)[tBu4OS](PMe3) (1(PMe3)). An X‐ray crystallographic study of1(PMe3) revealed that two structurally distinct square pyramidal molecules are present in which the alkylidene ligand occupies the apical position in each. Both1(PMe3)Aand1(PMe3)Bare disordered. Mo(NAd)(CHCMe2Ph)(tBu4OS)(PMe3) (2(PMe3); Ad=1‐adamantyl) and W(NAr)(CHCMe2Ph)(tBu4OS)(PMe3) (3(PMe3)) were prepared using analogous approaches.1(PMe3) reacts with ethylene (1 atm) in benzene within 45 minutes to give an ethylene complex Mo(NAr)(tBu4OS)(C2H4) (4) that is isolable and relatively stable toward loss of ethylene below 60 °C. An X‐ray study shows that the bond distances and angles for the ethylene ligand in4are like those found for bisalkoxide ethylene complexes of the same general type. Complex1(PMe3) in the presence of one equivalent of B(C6F5)3catalyzes the homocoupling of 1‐decene, allyltrimethylsilane, and allylboronic acid pinacol ester at ambient temperature.1(PMe3),2(PMe3), and3(PMe3) all catalyze the ROMP ofracendo,exo‐5,6‐dicarbomethoxynorbornene (rac‐DCMNBE) in the presence of B(C6F5)3, but the polyDCMNBE that is formed has a random structure.

     
    more » « less
  4. Abstract

    Exploration of the reduction chemistry of the 2,2’‐bipyridine (bipy) lanthanide metallocene complexes Cp*2LnCl(bipy) and Cp*2Ln(bipy) (Cp* = C5Me5) resulted in the isolation of a series of complexes with unusual composition and structure including complexes with a single Cp* ligand, multiple azide ligands, and bipy ligands with close parallel orientations. These results not only reveal new structural types, but they also show the diverse chemistry displayed by this redox‐active platform. Treatment of Cp*2NdCl(bipy) with excess KC8resulted in the formation of the mono‐Cp* Nd(III) complex, [K(crypt)]2[Cp*Nd(bipy)2],1, as well as [K(crypt)][Cp*2NdCl2],2, and the previously reported [K(crypt)][Cp*2Nd(bipy)]. A mono‐Cp* Lu(III) complex, Cp*Lu(bipy)2,3, was also found in an attempt to make Cp*2Lu(bipy) from LuCl3, 2 equiv. of KCp*, bipy, and K/KI. Surprisingly, the (bipy)1−ligands in neighboring molecules in the structure of3are oriented in a parallel fashion with intermolecular C⋅⋅⋅C distances of 3.289(4) Å, which are shorter than the sum of van der Waals radii of two carbon atoms, 3.4 Å. Another product with one Cp* ligand per lanthanide was isolated from the reaction of [K(crypt)][Cp*2Eu(bipy)] with azobenzene, which afforded the dimeric Eu(II) complex, [K(crypt)]2[Cp*Eu(THF)(PhNNPh)]2,4. Attempts to make4from the reaction between Cp*2Eu(THF)2and a reduced azobenzene anion generated instead the mixed‐valent Eu(III)/Eu(II) complex, [K(crypt)][Cp*Eu(THF)(PhNNPh)]2,5, which allows direct comparison with the bimetallic Eu(II) complex4. Mono‐Cp* complexes of Yb(III) are obtained from reactions of the Yb(II) complex, [K(crypt)][Cp*2Yb(bipy)], with trimethylsilylazide, which afforded the tetra‐azido [K(crypt)]2[Cp*Yb(N3)4],6, or the di‐azido complex [K(crypt)]2[Cp*Yb(N3)2(bipy)],7 a, depending on the reaction stoichiometry. A mono‐Cp* Yb(III) complex is also isolated from reaction of [K(crypt)][Cp*2Yb(bipy)] with elemental sulfur which forms the mixed polysulfido Yb(III) complex [K(crypt)]2[Cp*Yb(S4)(S5)],8 a. In contrast to these reactions that form mono‐Cp* products, reduction of Cp*2Yb(bipy) with 1 equiv. of KC8in the presence of 18‐crown‐6 resulted in the complete loss of Cp* ligands and the formation of [K(18‐c‐6)(THF)][Yb(bipy)4],9. The (bipy)1−ligands of9are arranged in a parallel orientation, as observed in the structure of3, except in this case this interaction is intramolecular and involves pairs of ligands bound to the same Yb atom. Attempts to reduce further the Sm(II) (bipy)1−complex, Cp*2Sm(bipy) with 2 equiv. of KC8in the presence of excess 18‐crown‐6 led to the isolation of a Sm(III) salt of (bipy)2−with an inverse sandwich Cp* counter‐cation and a co‐crystallized K(18‐c‐6)Cp* unit, [K2(18‐c‐6)2Cp*]2[Cp*2Sm(bipy)]2 ⋅ [K(18‐c‐6)Cp*],10.

     
    more » « less
  5. 1,3-Dimethyl-2,3-dihydrobenzo[d]imidazoles,1H, and 1,1',3,3'-tetramethyl-2,2',3,3'-tetrahydro-2,2'-bibenzo[d]imidazoles,12, are of interest as n-dopants for organic electron-transport materials. Salts of 2-(4-(dimethylamino)phenyl)-4,7-dimethoxy-, 2-cyclohexyl-4,7-dimethoxy-, and 2-(5-(dimethylamino)thiophen-2-yl)benzo[d]imidazolium (1g–i+, respectively) have been synthesized and reduced with NaBH4to1gH,1hH, and1iH, and with Na:Hg to1g2and1h2. Their electrochemistry and reactivity were compared to those derived from 2-(4-(dimethylamino)phenyl)- (1b+) and 2-cyclohexylbenzo[d]imidazolium (1e+) salts.E(1+/1) values for 2-aryl species are less reducing than for 2-alkyl analogues, i.e., the radicals are stabilized more by aryl groups than the cations, while 4,7-dimethoxy substitution leads to more reducingE(1+/1) values, as well as cathodic shifts inE(12•+/12) andE(1H•+/1H) values. Both the use of 3,4-dimethoxy and 2-aryl substituents accelerates the reaction of the1Hspecies with PC61BM. Because 2-aryl groups stabilize radicals,1b2and1g2exhibit weaker bonds than1e2and1h2and thus react with 6,13-bis(triisopropylsilylethynyl)pentacene (VII) via a “cleavage-first” pathway, while1e2and1h2react only via “electron-transfer-first”.1h2exhibits the most cathodicE(12•+/12) value of the dimers considered here and, therefore, reacts more rapidly than any of the other dimers withVIIvia “electron-transfer-first”. Crystal structures show rather long central C–C bonds for1b2(1.5899(11) and 1.6194(8) Å) and1h2(1.6299(13) Å).

     
    more » « less