skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tensors in Statistics
This article provides an overview of tensors, their properties, and their applications in statistics. Tensors, also known as multidimensional arrays, are generalizations of matrices to higher orders and are useful data representation architectures. We first review basic tensor concepts and decompositions, and then we elaborate traditional and recent applications of tensors in the fields of recommender systems and imaging analysis. We also illustrate tensors for network data and explore the relations among interacting units in a complex network system. Some canonical tensor computational algorithms and available software libraries are provided for various tensor decompositions. Future research directions, including tensors in deep learning, are also discussed.  more » « less
Award ID(s):
1952406
PAR ID:
10236468
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Annual Review of Statistics and Its Application
Volume:
8
Issue:
1
ISSN:
2326-8298
Page Range / eLocation ID:
345 to 368
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Tensors are used by a wide variety of applications to represent multi-dimensional data; tensor decompositions are a class of methods for latent data analytics, data compression, and so on. Many of these applications generate large tensors with irregular dimension sizes and nonzero distribution. CANDECOMP/PARAFAC decomposition (Cpd) is a popular low-rank tensor decomposition for discovering latent features. The increasing overhead on memory and execution time ofCpdfor large tensors requires distributed memory implementations as the only feasible solution. The sparsity and irregularity of tensors hinder the improvement of performance and scalability of distributed memory implementations. While previous works have been proved successful inCpdfor tensors with relatively regular dimension sizes and nonzero distribution, they either deliver unsatisfactory performance and scalability for irregular tensors or require significant time overhead in preprocessing. In this work, we focus on medium-grained tensor distribution to address their limitation for irregular tensors. We first thoroughly investigate through theoretical and experimental analysis. We disclose that the main cause of poorCpdperformance and scalability is the imbalance of multiple types of computations and communications and their tradeoffs; and sparsity and irregularity make it challenging to achieve their balances and tradeoffs. Irregularity of a sparse tensor is categorized based on two aspects: very different dimension sizes and a non-uniform nonzero distribution. Typically, focusing on optimizing one type of load imbalance causes other ones more severe for irregular tensors. To address such challenges, we propose irregularity-aware distributedCpdthat leverages the sparsity and irregularity information to identify the best tradeoff between different imbalances with low time overhead. We materialize the idea with two optimization methods: the prediction-based grid configuration and matrix-oriented distribution policy, where the former forms the global balance among computations and communications, and the latter further adjusts the balances among computations. The experimental results show that our proposed irregularity-aware distributedCpdis more scalable and outperforms the medium- and fine-grained distributed implementations by up to 4.4 × and 11.4 × on 1,536 processors, respectively. Our optimizations support different sparse tensor formats, such as compressed sparse fiber (CSF), coordinate (COO), and Hierarchical Coordinate (HiCOO), and gain good scalability for all of them. 
    more » « less
  2. Hypergraphs and tensors extend classic graph and matrix theories to account for multiway relationships, which are ubiquitous in engineering, biological, and social systems. While the Kronecker product is a potent tool for analyzing the coupling of systems in a graph or matrix context, its utility in studying multiway interactions, such as those represented by tensors and hypergraphs, remains elusive. In this article, we present a comprehensive exploration of algebraic, structural, and spectral properties of the tensor Kronecker product. We express Tucker and tensor train decompositions and various tensor eigenvalues in terms of the tensor Kronecker product. Additionally, we utilize the tensor Kronecker product to form Kronecker hypergraphs, which are tensor-based hypergraph products, and investigate the structure and stability of polynomial dynamics on Kronecker hypergraphs. Finally, we provide numerical examples to demonstrate the utility of the tensor Kronecker product in computing Z-eigenvalues, performing various tensor decompositions, and determining the stability of polynomial systems. 
    more » « less
  3. The matricized-tensor times Khatri-Rao product (MTTKRP) is the computational bottleneck for algorithms computing CP decompositions of tensors. In this work, we develop shared-memory parallel algorithms for MTTKRP involving dense tensors. The algorithms cast nearly all of the computation as matrix operations in order to use optimized BLAS subroutines, and they avoid reordering tensor entries in memory. We use our parallel implementation to compute a CP decomposition of a neuroimaging data set and achieve a speedup of up to 7.4X over existing parallel software. 
    more » « less
  4. DeepTensor is a computationally efficient framework for low-rank decomposition of matrices and tensors using deep generative networks. We decompose a tensor as the product of low-rank tensor factors where each low-rank tensor is generated by a deep network (DN) that is trained in a self-supervised manner to minimize the mean-square approximation error. Our key observation is that the implicit regularization inherent in DNs enables them to capture nonlinear signal structures that are out of the reach of classical linear methods like the singular value decomposition (SVD) and principal components analysis (PCA). We demonstrate that the performance of DeepTensor is robust to a wide range of distributions and a computationally efficient drop-in replacement for the SVD, PCA, nonnegative matrix factorization (NMF), and similar decompositions by exploring a range of real-world applications, including hyperspectral image denoising, 3D MRI tomography, and image classification. 
    more » « less
  5. Multilayer networks describe the rich ways in which nodes are related by accounting for different relationships in separate layers. These multiple relationships are naturally represented by an adjacency tensor. In this work we study the use of the nonnegative Tucker decomposition (NNTuck) of such tensors under a KL loss as an expressive factor model that naturally generalizes existing stochastic block models of multilayer networks. Quantifying interdependencies between layers can identify redundancies in the structure of a network, indicate relationships between disparate layers, and potentially inform survey instruments for collecting social network data. We propose definitions of layer independence, dependence, and redundancy based on likelihood ratio tests between nested nonnegative Tucker decompositions. Using both synthetic and real-world data, we evaluate the use and interpretation of the NNTuck as a model of multilayer networks. Algorithmically, we show that using expectation maximization (EM) to maximize the log-likelihood under the NNTuck is step-by-step equivalent to tensorial multiplicative updates for the NNTuck under a KL loss, extending a previously known equivalence from nonnegative matrices to nonnegative tensors. 
    more » « less