The cis- and trans-isomers of a silacycloheptene were selectively synthesized by the alkylation of a silyl dianion, a novel approach to strained cycloalkenes. The trans-silacycloheptene (trans-SiCH) was significantly more strained than the cis isomer, as predicted by quantum chemical calculations and confirmed by crystallographic signatures of a twisted alkene. Each isomer exhibited distinct reactivity toward ring-opening metathesis polymerization (ROMP), where only trans-SiCH afforded high-molar-mass polymer under enthalpy-driven ROMP. Hypothesizing that the introduction of silicon might result in increased molecular compliance at large extensions, we compared poly(trans-SiCH) to organic polymers by single-molecule force spectroscopy (SMFS). Force-extension curves from SMFS showed that poly(trans-SiCH) is more easily overstretched than two carbon-based analogues, polycyclooctene and polybutadiene, with stretching constants that agree well with the results of computational simulations.
more »
« less
An Ion‐Pairing Approach to Stereoselective Metal‐Free Ring‐Opening Metathesis Polymerization
Abstract Stereochemistry can have a profound impact on polymer and materials properties. Unfortunately, straightforward methods for realizing high levels of stereocontrolled polymerizations are often challenging to achieve. In a departure from traditional metal‐mediated ring‐opening metathesis polymerization (ROMP), we discovered a remarkably simple method for controlling alkene stereochemistry in photoredox mediated metal‐free ROMP. Ion‐pairing, initiator sterics, and solvation effects each had profound impact on the stereochemistry of polynorbornene (PNB). Simple modifications to the reaction conditions produced PNB withtransalkene content of 25 to >98 %. Highciscontent was obtained from relatively larger counterions, toluene as solvent, low temperatures (−78 °C), and initiators with low Charton values. Conversely, smaller counterions, dichloromethane as solvent, and enol ethers with higher Charton values enabled production of PNB with hightranscontent. Data from a combined experimental and computational investigation are consistent with the stereocontrolling step of the radical cationic mechanism proceeding under thermodynamic control.
more »
« less
- Award ID(s):
- 2002886
- PAR ID:
- 10236549
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 60
- Issue:
- 25
- ISSN:
- 1433-7851
- Page Range / eLocation ID:
- p. 13952-13958
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Because internal alkenes are more challenging synthetic targets than terminal alkenes, metal‐catalyzed olefin mono‐transposition (i.e., positional isomerization) approaches have emerged to afford valuableE‐ orZ‐internal alkenes from their complementary terminal alkene feedstocks. However, the applicability of these methods has been hampered by lack of generality, commercial availability of precatalysts, and scalability. Here, we report a nickel‐catalyzed platform for the stereodivergentE/Z‐selective synthesis of internal alkenes at room temperature. Commercial reagents enable this one‐carbon transposition of terminal alkenes to valuableE‐ orZ‐internal alkenes via a Ni−H‐mediated insertion/elimination mechanism. Though the mechanistic regime is the same in both systems, the underlying pathways that lead to each of the active catalysts are distinct, with theZ‐selective catalyst forming from comproportionation of an oxidative addition complex followed by oxidative addition with substrate and theE‐selective catalyst forming from protonation of the metal by the trialkylphosphonium salt additive. In each case, ligand sterics and denticity control stereochemistry and prevent over‐isomerization.more » « less
-
Abstract The stereochemistry of the uncatalyzed chlorolactonization of 4‐phenylpent‐4‐enoic acid at room temperature was examined to probe the reaction's intrinsic diastereoselectivities as a function of chlorenium ion donor, solvent polarity, and reactant concentration ranges. Kinetic studies using Variable Time Normalization Analysis (VTNA) revealed differing reaction orders for thesynandantialkene addition processes. Aided and illustrated by quantum chemical modeling, this detailed mechanistic analysis of the substrate's intrinsic chlorolactonization reactions points to concerted AdE3‐type paths for bothsynandantiadditions. By illuminating the factors selecting forsyn‐vsanti‐addition paths, the results provide key reference points for future studies of stereocontrol in halofunctionalization reactions.more » « less
-
Abstract Control over the stereochemistry of excited-state photoreactions remains a significant challenge in organic synthesis. Recently, it has become recognized that the photophysical properties of simple organic substrates can be altered upon coordination to Lewis acid catalysts, and that these changes can be exploited in the design of highly enantioselective catalytic photoreactions. Chromophore activation strategies, wherein simple organic substrates are activated towards photoexcitation upon binding to a Lewis acid catalyst, rank among the most successful asymmetric photoreactions. Herein, we show that chiral Brønsted acids can also catalyze asymmetric excited-state photoreactions by chromophore activation. This principle is demonstrated in the context of a highly enantio- and diastereoselective [2+2] photocycloaddition catalyzed by a chiral phosphoramide organocatalyst. Notably, the cyclobutane products arising from this method feature atrans-cisstereochemistry that is complementary to other enantioselective catalytic [2+2] photocycloadditions reported to date.more » « less
-
Abstract Enantioselective, intermolecular alkene arylamination was achieved through gold redox catalysis. Screening of ligands revealed chiral P,N ligands as the optimal choice, giving alkene aminoarylation with good yields (up to 80 %) and excellent stereoselectivity (up to 99 : 1er). As the first example of enantioselective gold redox catalysis, this work confirmed the feasibility of applying a chiral ligand at the gold(I) stage, with the stereodetermining step (SDS) at the gold(III) intermediate, thus opening up a new way to conduct gold redox catalysis with stereochemistry control.more » « less
An official website of the United States government
