skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Time‐dependent combinatory effects of active mechanical loading and passive topographical cues on cell orientation
ABSTRACT   more » « less
NSF-PAR ID:
10236564
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Biotechnology and Bioengineering
Volume:
113
Issue:
10
ISSN:
0006-3592
Format(s):
Medium: X Size: p. 2191-2201
Size(s):
p. 2191-2201
Sponsoring Org:
National Science Foundation
More Like this
  1. When adherent cells are subjected to uniaxial sinusoidal stretch at frequencies close to physiological, their body and their contractile stress fibers realign nearly perpendicularly to the stretch axis. A common explanation for this phenomenon is that stress fibers reorient along the direction where they are unaffected by the applied cyclic stretch and thus can maintain optimal (homeostatic) tensile force. The ability of cells to achieve tensional homeostasis in response to external disturbances is important for normal physiological functions of cells and tissues and it provides protection against diseases, including cancer and atherosclerosis. However, quantitative experimental data that support the idea that stretch-induced reorientation is associated with tensional homeostasis are lacking. We observed previously that in response to uniaxial cyclic stretch of 10% strain amplitudes, traction forces of single endothelial cells reorient in the direction perpendicular to the stretch axis. Here we carried out a secondary analysis of those data to investigate whether this reorientation of traction forces is associated with tensional homeostasis. Our analysis showed that stretch-induced reorientation of traction forces was accompanied by attenuation of temporal variability of the traction field to the level that was observed in the absence of stretch. These findings represent a quantitative experimental evidence that stretch-induced reorientation of the cell’s traction forces is associated with the cell’s tendency to achieve tensional homeostasis. 
    more » « less
  2. Abstract

    The electrical performance of stretchable electronic inks degrades as they undergo cyclic deformation during use, posing a major challenge to their reliability. The experimental characterization of ink fatigue behavior can be a time-consuming process, and models allowing accurate resistance evolution and life estimates are needed. Here, a model is proposed for determining the electrical resistance evolution during cyclic loading of a screen-printed composite conductive ink. The model relies on two input specimen-characteristic curves, assumes a constant rate of normalized resistance increase for a given strain amplitude, and incorporates the effects of both mean strain and strain amplitude. The model predicts the normalized resistance evolution of a cyclic test with reasonable accuracy. The mean strain effects are secondary compared to strain amplitude, except for large strain amplitudes (>10%) and mean strains (>30%). A trace width effect is found for the fatigue behavior of 1 mm vs 2 mm wide specimens. The input specimen-characteristic curves are trace-width dependent, and the model predicts a decrease inNfby a factor of up to 2 for the narrower trace width, in agreement with the experimental results. Two different methods are investigated to generate the rate of normalized resistance increase curves: uninterrupted fatigue tests (requiring ∼6–7 cyclic tests), and a single interrupted cyclic test (requiring only one specimen tested at progressively higher strain amplitude values). The results suggest that the initial decrease in normalized resistance rate only occurs for specimens with no prior loading. The minimum-rate curve is therefore recommended for more accurate fatigue estimates.

     
    more » « less
  3. This study aimed to understand extracellular mechanical stimuli’s effect on prostate cancer cells’ metastatic progression within a three-dimensional (3D) bone-like microenvironment. In this study, a mechanical loading platform, EQUicycler, has been employed to create physiologically relevant static and cyclic mechanical stimuli to a prostate cancer cell (PC-3)-embedded 3D tissue matrix. Three mechanical stimuli conditions were applied: control (no loading), cyclic (1% strain at 1 Hz), and static mechanical stimuli (1% strain). The changes in prostate cancer cells’ cytoskeletal reorganization, polarity (elongation index), proliferation, expression level of N-Cadherin (metastasis-associated gene), and migratory potential within the 3D collagen structures were assessed upon mechanical stimuli. The results have shown that static mechanical stimuli increased the metastasis progression factors, including cell elongation (p < 0.001), cellular F-actin accumulation (p < 0.001), actin polymerization (p < 0.001), N-Cadherin gene expression, and invasion capacity of PC-3 cells within a bone-like microenvironment compared to its cyclic and control loading counterparts. This study established a novel system for studying metastatic cancer cells within bone and enables the creation of biomimetic in vitro models for cancer research and mechanobiology.

     
    more » « less
  4. The tendon‐bone junction is a unique, mechanically dynamic, structurally graded anatomical zone, which transmits tensile loads between tendon and bone. Current surgical repair techniques rely on mechanical fixation and can result in high re‐failure rates. A new class of collagen biomaterial that contains discrete mineralized and structurally aligned regions linked by a continuous interface to mimic the graded osteotendinous insertion has been recently described. Here the combined influence of graded biomaterial environment and increasing levels of applied strain (0%–20%) on mesenchymal stem cell (MSC) orientation and alignment have been reported. Inosteotendinousscaffolds, which contain opposing gradients of mineral content and structural alignment characteristic of the native osteotendinous interface, MSC nuclear, and actin alignment is initially dictated by the local pore architecture, while applied tensile strain enhances cell alignment in the direction of strain. Comparatively, inlayeredscaffolds that do not contain any structural alignment cues, MSCs are randomly oriented in the unstrained condition, then become oriented in a direction perpendicular to applied strain. These findings provide an initial understanding of how scaffold architecture can provide significant, potentially competitive, feedback influencing MSC orientation under applied strain, and form the basis for future tissue engineering efforts to regenerate the osteotendinous enthesis.

     
    more » « less
  5. null (Ed.)
    Key properties of two-dimensional (2D) layered materials are highly strain tunable, arising from bond modulation and associated reconfiguration of the energy bands around the Fermi level. Approaches to locally controlling and patterning strain have included both active and passive elastic deformation via sustained loading and templating with nanostructures. Here, by float-capturing ultrathin flakes of single-crystal 2H-MoS2 on amorphous holey silicon nitride substrates, we find that highly symmetric, high-fidelity strain patterns are formed. The hexagonally arranged holes and surface topography combine to generate highly conformal flake-substrate coverage creating patterns that match optimal centroidal Voronoi tessellation in 2D Euclidean space. Using TEM imaging and diffraction, as well as AFM topographic mapping, we determine that the substrate-driven 3D geometry of the flakes over the holes consists of symmetric, out-of-plane bowl-like deformation of up to 35 nm, with in-plane, isotropic tensile strains of up to 1.8% (measured with both selected-area diffraction and AFM). Atomistic and image simulations accurately predict spontaneous formation of the strain patterns, with van der Waals forces and substrate topography as the input parameters. These results show that predictable patterns and 3D topography can be spontaneously induced in 2D materials captured on bare, holey substrates. The method also enables electron scattering studies of precisely aligned, substrate-free strained regions in transmission mode. 
    more » « less