Photoinduced charge transfer between neighboring bases plays an important role in DNA. One of its important effects is shown in its ability to affect the photochemical yields of the formation of cyclobutane pyrimidine dimer (CPD) products between adjacent pyrimidine bases. In this work we examine how the energies of charge transfer states depend on the sequences of oligonucleotides using a hybrid quantum and molecular mechanics (QM/MM) methodology combined with the algebraic diagrammatic construction through a second order electronic structure method for excited states. Specifically, we examine 10 sequences with guanine being on the 5′ or 3′ position of two pyrimidine bases. The results show that the energies of charge transfer states are affected by the nature of the donor acceptor pair, by the distance between them, and by other electrostatic effects created by the surrounding environment.
more »
« less
Stabilization of the Triplet Biradical Intermediate of 5‐Methylcytosine Enhances Cyclobutane Pyrimidine Dimer (CPD) Formation in DNA
Abstract Cyclobutane pyrimidine dimer (CPD) is a photoproduct formed by two stacked pyrimidine bases through a cycloaddition reaction upon irradiation. Owing to its close association with skin cancer, the mechanism of CPD formation has been studied thoroughly. Among many aspects of CPD, its formation involving 5‐methylcytosine (5mC) has been of special interest because the CPD yield is known to increase with C5‐methylation of cytosine. In this work, high‐level quantum mechanics/molecular mechanics (QM/MM) calculations are used to examine a previously experimentally detected pathway for CPD formation in hetero (thymine‐cytosine and thymine‐5mC) dipyrimidines, which is facilitated through intersystem crossing in thymine and formation of a triplet biradical intermediate. A DNA duplex model system containing a core sequence TmCG or TCG is used. The stabilization of a radical center in the biradical intermediate by the methyl group of 5mC can lead to increased CPD yield in TmCG compared with its non‐methylated counterpart, TCG, thereby suggesting the existence of a new pathway of CPD formation enhanced by 5mC.
more »
« less
- Award ID(s):
- 1800171
- PAR ID:
- 10236604
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Chemistry – A European Journal
- Volume:
- 26
- Issue:
- 62
- ISSN:
- 0947-6539
- Format(s):
- Medium: X Size: p. 14181-14186
- Size(s):
- p. 14181-14186
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Noncoding mutation hotspots have been identified in melanoma and many of them occur at the binding sites of E26 transformation-specific (ETS) proteins; however, their formation mechanism and functional impacts are not fully understood. Here, we used UV (Ultraviolet) damage sequencing data and analyzed cyclobutane pyrimidine dimer (CPD) formation, DNA repair, and CPD deamination in human cells at single-nucleotide resolution. Our data show prominent CPD hotspots immediately after UV irradiation at ETS binding sites, particularly at sites with a conserved TTCCGG motif, which correlate with mutation hotspots identified in cutaneous melanoma. Additionally, CPDs are repaired slower at ETS binding sites than in flanking DNA. Cytosine deamination in CPDs to uracil is suggested as an important step for UV mutagenesis. However, we found that CPD deamination is significantly suppressed at ETS binding sites, particularly for the CPD hotspot on the 5′ side of the ETS motif, arguing against a role for CPD deamination in promoting ETS-associated UV mutations. Finally, we analyzed a subset of frequently mutated promoters, including the ribosomal protein genesRPL13AandRPS20, and found that mutations in the ETS motif can significantly reduce the promoter activity. Thus, our data identify high UV damage and low repair, but not CPD deamination, as the main mechanism for ETS-associated mutations in melanoma and uncover important roles of often-overlooked mutation hotspots in perturbing gene transcription.more » « less
-
Abstract Photochemical dimerization of adjacent pyrimidines is fundamental to the creation of mutagenic hotspots caused by ultraviolet light. Distribution of the resulting lesions (cyclobutane pyrimidine dimers, CPDs) is already known to be highly variable in cells, and in vitro models have implicated DNA conformation as a major basis for this observation. Past efforts have primarily focused on mechanisms that influence CPD formation and have rarely considered contributions of CPD reversion. However, reversion is competitive under the standard conditions of 254 nm irradiation as illustrated in this report based on the dynamic response of CPDs to changes in DNA conformation. A periodic profile of CPDs was recreated in DNA held in a bent conformation by λ repressor. After linearization of this DNA, the CPD profile relaxed to its characteristic uniform distribution over a similar time of irradiation to that required to generate the initial profile. Similarly, when a T tract was released from a bent conformation, its CPD profile converted under further irradiation to that consistent with a linear T tract. This interconversion of CPDs indicates that both its formation and reversion exert control on CPD populations long before photo-steady-state conditions are achieved and suggests that the dominant sites of CPDs will evolve as DNA conformation changes in response to natural cellular processes.more » « less
-
Abstract DNA methylation at cytosine bases (5-methylcytosine, 5mC) is a heritable epigenetic mark regulating gene expression. While enzymes that metabolize 5mC are well-characterized, endogenous signaling molecules that regulate DNA methylation machinery have not been described. We report that physiological nitric oxide (NO) concentrations reversibly inhibit the DNA demethylases TET and ALKBH2 by binding to the mononuclear non-heme iron atom forming a dinitrosyliron complex (DNIC) and preventing cosubstrates from binding. In cancer cells treated with exogenous NO, or endogenously synthesizing NO, 5mC and 5-hydroxymethylcytosine (5hmC) increase, with no changes in DNA methyltransferase activity. 5mC is also significantly increased in NO-producing patient-derived xenograft tumors from mice. Genome-wide methylome analysis of cells chronically treated with NO (10 days) shows enrichment of 5mC and 5hmC at gene-regulatory loci, correlating with altered expression of NO-regulated tumor-associated genes. Regulation of DNA methylation is distinctly different from canonical NO signaling and represents a unique epigenetic role for NO.more » « less
-
The hydrolytic deamination of cytosine and 5-methylcytosine drives many of the transition mutations observed in human cancer. The deamination-induced mutagenic intermediates include either uracil or thymine adducts mispaired with guanine. While a substantial array of methods exist to measure other types of DNA adducts, the cytosine deamination adducts pose unusual analytical problems, and adequate methods to measure them have not yet been developed. We describe here a novel hybrid thymine DNA glycosylase (TDG) that is comprised of a 29-amino acid sequence from human TDG linked to the catalytic domain of a thymine glycosylase found in an archaeal thermophilic bacterium. Using defined-sequence oligonucleotides, we show that hybrid TDG has robust mispair-selective activity against deaminated U:G and T:G mispairs. We have further developed a method for separating glycosylase-released free bases from oli- gonucleotides and DNA followed by GC–MS/MS quantification. Using this approach, we have measured for the first time the levels of total uracil, U:G, and T:G pairs in calf thymus DNA. The method presented here will allow the measurement of the for- mation, persistence, and repair of a biologically important class of deaminated cytosine adducts.more » « less
An official website of the United States government
