skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: TMEDA in Iron‐Catalyzed Hydromagnesiation: Formation of Iron(II)‐Alkyl Species for Controlled Reduction to Alkene‐Stabilized Iron(0)
Abstract N,N,N′,N′‐Tetramethylethylenediamine (TMEDA) has been one of the most prevalent and successful additives used in iron catalysis, finding application in reactions as diverse as cross‐coupling, C−H activation, and borylation. However, the role that TMEDA plays in these reactions remains largely undefined. Herein, studying the iron‐catalyzed hydromagnesiation of styrene derivatives using TMEDA has provided molecular‐level insight into the role of TMEDA in achieving effective catalysis. The key is the initial formation of TMEDA–iron(II)–alkyl species which undergo a controlled reduction to selectively form catalytically active styrene‐stabilized iron(0)–alkyl complexes. While TMEDA is not bound to the catalytically active species, these active iron(0) complexes cannot be accessed in the absence of TMEDA. This mode of action, allowing for controlled reduction and access to iron(0) species, represents a new paradigm for the role of this important reaction additive in iron catalysis.  more » « less
Award ID(s):
1725028
PAR ID:
10236606
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
59
Issue:
39
ISSN:
1433-7851
Page Range / eLocation ID:
p. 17070-17076
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Three five‐coordinate iron(IV) imide complexes have been synthesized and characterized. These novel structures have disparate spin states on the iron as a function of the R‐group attached to the imide, with alkyl groups leading to low‐spin diamagnetic (S=0) complexes and an aryl group leading to an intermediate‐spin (S=1) complex. The different spin states lead to significant differences in the bonding about the iron center as well as the spectroscopic properties of these complexes. Mössbauer spectroscopy confirmed that all three imide complexes are in the iron(IV) oxidation state. The combination of diamagnetism and15N labeling allowed for the first15N NMR resonance recorded on an iron imide. Multi‐reference calculations corroborate the experimental structural findings and suggest how the bonding is distinctly different on the imide ligand between the two spin states. 
    more » « less
  2. Abstract Neutral three‐coordinate iron alkylidenes of the form PN−Fe=CHR have been proposed as viable candidates for alkene metathesis. Indeed, during the final stages of preparing this current study, a separate report disclosed that dearomatized PN−Fe‐alkyl complexes are active precatalysts for ring‐opening metathesis polymerization (ROMP) of norbornene implicating PN−Fe=CHR species as possible intermediates. In yet another separate report, we prepared Zn analogues of PN−Fe‐alkyl complexes and herein provide an account for the synthesis, characterization, and reactivity of some new iron complexes with the sametBu substituted PN platform. 
    more » « less
  3. Catalysts are essential for mediating a controlled polymerization in atom transfer radical polymerization (ATRP). Copper-based catalysts are widely explored in ATRP and are highly efficient, leading to well-controlled polymerization of a variety of functional monomers. In addition to copper, iron-based complexes offer new opportunities in ATRP catalysis to develop environmentally friendly, less toxic, inexpensive, and abundant catalytic systems. Despite the high efficiency of iron catalysts in controlling polymerization of various monomers including methacrylates and styrene, ATRP of acrylate-based monomers by iron catalysts still remains a challenge. In this paper, we review the fundamentals and recent advances of iron-catalyzed ATRP focusing on development of ligands, catalyst design, and techniques used for iron catalysis in ATRP. 
    more » « less
  4. Abstract High‐valent metal‐oxo species play critical roles in enzymatic catalysis yet their properties are still poorly understood. In this work we report a combined experimental and computational study into biomimetic iron(IV)‐oxo and iron(III)‐oxo complexes with tight second‐coordination sphere environments that restrict substrate access. The work shows that the second‐coordination sphere slows the hydrogen atom abstraction step from toluene dramatically and the kinetics is zeroth order in substrate. However, the iron(II)‐hydroxo that is formed has a low reduction potential and hence cannot do OH rebound favorably. The tolyl radical in solution then reacts further with alternative reaction partners. By contrast, the iron(IV)‐oxo species reacts predominantly through OH rebound to form alcohol products. Our studies show that the oxidation state of the metal influences reactivities and selectivities with substrate dramatically and that enzymes will likely need an iron(IV) center to catalyze C−H hydroxylation reactions. 
    more » « less
  5. Abstract The effects of β‐hydrogen‐containing alkyl Grignard reagents in simple ferric salt cross‐couplings have been elucidated. The reaction of FeCl3with EtMgBr in THF leads to the formation of the cluster species [Fe8Et12]2−, a rare example of a structurally characterized metal complex with bridging ethyl ligands. Analogous reactions in the presence of NMP, a key additive for effective cross‐coupling with simple ferric salts and β‐hydrogen‐containing alkyl nucleophiles, result in the formation of [FeEt3]. Reactivity studies demonstrate the effectiveness of [FeEt3]in rapidly and selectively forming the cross‐coupled product upon reaction with electrophiles. The identification of iron‐ate species with EtMgBr analogous to those previously observed with MeMgBr is a critical insight, indicating that analogous iron species can be operative in catalysis for these two classes of alkyl nucleophiles. 
    more » « less