skip to main content


Title: Gravitational wave bounds on dirty black holes

Detection of gravitational waves has provided a new way to test black hole (BH) models. We show how simple constraints can be obtained for models that go beyond vacuum Einstein gravity solutions of binary BH mergers. Generic stationary metrics, termed dirty BHs in the literature, are not vacuum solutions of the Einstein equations. These models are, however, general enough to describe BHs surrounded by matter fields. Gravitational wave constraints already rule out certain parts of parameter space for these solutions, including certain parameters describing objects without horizons that have recently been studied in the context of pseudo‐complex general relativity.

 
more » « less
NSF-PAR ID:
10236856
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Astronomische Nachrichten
Volume:
340
Issue:
1-3
ISSN:
0004-6337
Page Range / eLocation ID:
p. 116-120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs. 
    more » « less
  2. Abstract

    Horizon-scale images of black holes (BHs) and their shadows have opened an unprecedented window onto tests of gravity and fundamental physics in the strong-field regime. We consider a wide range of well-motivated deviations from classical general relativity (GR) BH solutions, and constrain them using the Event Horizon Telescope (EHT) observations of Sagittarius A(Sgr A), connecting the size of the bright ring of emission to that of the underlying BH shadow and exploiting high-precision measurements of Sgr A’s mass-to-distance ratio. The scenarios we consider, and whose fundamental parameters we constrain, include various regular BHs, string-inspired space-times, violations of the no-hair theorem driven by additional fields, alternative theories of gravity, novel fundamental physics frameworks, and BH mimickers including well-motivated wormhole and naked singularity space-times. We demonstrate that the EHT image of Sgr Aplaces particularly stringent constraints on models predicting a shadow size larger than that of a Schwarzschild BH of a given mass, with the resulting limits in some cases surpassing cosmological ones. Our results are among the first tests of fundamental physics from the shadow of Sgr Aand, while the latter appears to be in excellent agreement with the predictions of GR, we have shown that a number of well-motivated alternative scenarios, including BH mimickers, are far from being ruled out at present.

     
    more » « less
  3. Abstract

    Intermediate-mass black holes (IMBHs) are believed to be the missing link between the supermassive black holes (BHs) found at the centers of massive galaxies and BHs formed through stellar core collapse. One of the proposed mechanisms for their formation is a collisional runaway process in high-density young star clusters, where an unusually massive object forms through repeated stellar collisions and mergers, eventually collapsing to form an IMBH. This seed IMBH could then grow further through binary mergers with other stellar-mass BHs. Here we investigate the gravitational-wave (GW) signals produced during these later IMBH–BH mergers. We use a state-of-the-art semi-analytic approach to study the stellar dynamics and to characterize the rates and properties of IMBH–BH mergers. We also study the prospects for detection of these mergers by current and future GW observatories, both space-based (LISA) and ground-based (LIGO Voyager, Einstein Telescope, and Cosmic Explorer). We find that most of the merger signals could be detected, with some of them being multiband sources. Therefore, GWs represent a unique tool to test the collisional runaway scenario and to constrain the population of dynamically assembled IMBHs.

     
    more » « less
  4. Context. Accreting black holes (BHs) may be surrounded by a highly magnetized plasma threaded by an organized poloidal magnetic field. Nonthermal flares and power-law spectral components at high energy could originate from a hot, collisionless, and nearly force-free corona. The jets we often observe from these systems are believed to be rotation-powered and magnetically driven. Aims. We study axisymmetric BH magnetospheres, where a fraction of the magnetic field lines anchored in a surrounding disk are connected to the event horizon of a rotating BH. For different BH spins, we identify the conditions and sites of magnetic reconnection within 30 gravitational radii. Methods. With the fully general relativistic particle-in-cell code GRZeltron , we solve the time-dependent dynamics of the electron–positron pair plasma and of the electromagnetic fields around the BH. The aligned disk is represented by a steady and perfectly conducting plasma in Keplerian rotation, threaded by a dipolar magnetic field. Results. For prograde disks around Kerr BHs, the topology of the magnetosphere is hybrid. Twisted open magnetic field lines crossing the horizon power a Blandford-Znajek jet, while open field lines with their footpoint beyond a critical distance on the disk could launch a magneto-centrifugal wind. In the innermost regions, coupling magnetic field lines ensure the transfer of significant amounts of angular momentum and energy between the BH and the disk. From the Y point at the intersection of these three regions, a current sheet forms where vivid particle acceleration via magnetic reconnection takes place. We compute the synchrotron images of the current sheet emission. Conclusions. Our estimates for jet power and BH–disk exchanges match those derived from purely force-free models. Particles are accelerated at the Y point, which acts as a heat source for the so-called corona. It provides a physically motivated ring-shaped source of hard X-rays above the disk for reflection models. Episodic plasmoid ejection might explain millisecond flares observed in Cygnus X-1 in the high-soft state, but are too fast to account for daily nonthermal flares from Sgr A * . Particles flowing from the Y point down to the disk could produce a hot spot at the footpoint of the outermost closed magnetic field line. 
    more » « less
  5. Abstract

    Accretion of magnetized gas on compact astrophysical objects such as black holes (BHs) has been successfully modeled using general relativistic magnetohydrodynamic (GRMHD) simulations. These simulations have largely been performed in the Kerr metric, which describes the spacetime of a vacuum and stationary spinning BH in general relativity (GR). The simulations have revealed important clues to the physics of accretion flows and jets near the BH event horizon and have been used to interpret recent Event Horizon Telescope images of the supermassive BHs M87* and Sgr A*. The GRMHD simulations require the spacetime metric to be given in horizon-penetrating coordinates such that all metric coefficients are regular at the event horizon. Only a few metrics, notably the Kerr metric and its electrically charged spinning analog, the Kerr–Newman metric, are currently available in such coordinates. We report here horizon-penetrating forms of a large class of stationary, axisymmetric, spinning metrics. These can be used to carry out GRMHD simulations of accretion on spinning, nonvacuum BHs and non-BHs within GR, as well as accretion on spinning objects described by non-GR metric theories of gravity.

     
    more » « less