skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Surface Interrogation of Electrodeposited MnO x and CaMnO 3 Perovskites by Scanning Electrochemical Microscopy: Probing Active Sites and Kinetics for the Oxygen Evolution Reaction
Abstract Surface interrogation scanning electrochemical microscopy (SI‐SECM) of two electrodeposited manganese‐based electrocatalysts, amorphous MnOxand perovskite CaMnO3, was used to investigate the manganese oxidation state relating to the oxygen evolution reaction (OER) under neutral conditions. The results indicate the amounts of MnIIIand MnIVspecies in MnOxand CaMnO3depend on potential. A MnVspecies was identified in both structures during the OER. Time‐delay titration of MnVfurther revealed that MnOxproduced two types of active sites with different OER reaction rates:k′fast(MnOx)=1.21 s−1andk’slow(MnOx)=0.24 s−1. In contrast, CaMnO3perovskites in which the MnVspecies formed at a less positive potential than that in MnOx, displayed only one kinetic behavior with a faster reaction rate of 1.72 s−1 more » « less
Award ID(s):
1707384
PAR ID:
10237020
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
2
ISSN:
1433-7851
Page Range / eLocation ID:
p. 794-799
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The objective of this study was to investigate the application of manganese oxide [MnO x(s) ] and granular activated carbon (GAC) media for the removal of caffeine and acetaminophen from water. Organic contaminants of emerging concern represent a developing issue due to their effects on human health and the environment. Manganese oxides are effective for water treatment because of their ability to mediate adsorption and oxidation–reduction reactions for many organic and inorganic constituents. Laboratory scale column experiments were performed using different combinations of commercial MnO x(s) and GAC for assessing the removal of caffeine and acetaminophen, and the subsequent release of soluble Mn due to the reductive dissolution of MnO x(s) . The removal of acetaminophen was detected for all media combinations investigated. However, the removal of caffeine by adsorption only occurred in columns containing GAC media. There was no removal of caffeine in columns containing only MnO x(s) media. Manganese release occurred in columns containing MnO x(s) media, but concentrations were below the secondary drinking water standard of 50 μg L −1 set by the US Environmental Protection Agency. Soluble Mn released from a first process by MnO x(s) media column was removed through adsorption into the GAC media used in a second process. The results of this investigation are relevant for implementation of MnO x(s) and GAC media combinations as an effective treatment process to remove organic contaminants from water. 
    more » « less
  2. Abstract The behavior of many plant enzymes depends on the metals and other ligands to which they are bound. A previous study demonstrated that tobacco Rubisco binds almost equally to magnesium and manganese and rapidly exchanges one metal for the other. The present study characterizes the kinetics of Rubisco and the plastidial malic enzyme when bound to either metal. When Rubisco purified from five C3species was bound to magnesium rather than manganese, the specificity for CO2over O2, (Sc/o) increased by 25% and the ratio of the maximum velocities of carboxylation / oxygenation (Vcmax/Vomax) increased by 39%. For the recombinant plastidial malic enzyme, the forward reaction (malate decarboxylation) was 30% slower and the reverse reaction (pyruvate carboxylation) was three times faster when bound to manganese rather than magnesium. Adding 6‐phosphoglycerate and NADP+inhibited carboxylation and oxygenation when Rubisco was bound to magnesium and stimulated oxygenation when it was bound to manganese. Conditions that favored RuBP oxygenation stimulated Rubisco to convert as much as 15% of the total RuBP consumed into pyruvate. These results are consistent with a stromal biochemical pathway in which (1) Rubisco when associated with manganese converts a substantial amount of RuBP into pyruvate, (2) malic enzyme when associated with manganese carboxylates a substantial portion of this pyruvate into malate, and (3) chloroplasts export additional malate into the cytoplasm where it generates NADH for assimilating nitrate into amino acids. Thus, plants may regulate the activities of magnesium and manganese in leaves to balance organic carbon and organic nitrogen as atmospheric CO2fluctuates. 
    more » « less
  3. Abstract In headwater catchments, surface groundwater discharge areas have unique soil biogeochemistry and can be hot spots for solute contribution to streams. Across the northeastern United States, headwater hillslopes with surface groundwater discharge were enriched in soil Mn, including Watershed 3 of Hubbard Brook Experimental Forest, New Hampshire. Soils of this site were investigated along a grid to determine extent of Mn‐rich zone(s) and relationships to explanatory variables using ordinary kriging. The O and B horizons were analyzed for total secondary Mn and Fe, Cr oxidation potential, total organic C, moisture content, wetness ratio, and pH. Two Mn hot spots were found: a poorly drained, flowing spring (Location A); and a moderately well‐drained swale (Location B). Both had ∼6,000–9,000 mg Mn kg–1soil. However, Location A had high Cr oxidation potential (a measure of Mn reactivity), whereas Location B did not. Location C, a poorly drained seep with slow‐moving water, had lower Mn content and Cr oxidation potential. Manganese‐rich soil particles were analyzed using X‐ray absorption near‐edge structure and micro‐X‐ray diffraction; the dominant oxidation state was Mn(IV), and the dominant Mn oxide species was a layer‐type Mn oxide (L‐MnO2). We propose input of Mn(II) with groundwater, which is oxidized by soil microbes. Studies of catchment structure and response could benefit from identifying hot spots of trace metals, sourced mainly from parent material but which accumulate according to hydropedologic conditions. Small‐scale variation in Mn enrichment due to groundwater and microtopography appears to be more important than regional‐scale variation due to air pollution. 
    more » « less
  4. Abstract Li2MnO3has been contemplated as a high‐capacity cathode candidate for Li‐ion batteries; however, it evolves oxygen during battery charging under ambient conditions, which hinders a reversible reaction. However, it is unclear if this irreversible process still holds under subambient conditions. Here, the low‐temperature electrochemical properties of Li2MnO3in an aqueous LiCl electrolyte are evaluated and a reversible discharge capacity of 302 mAh g−1at a potential of 1.0 V versus Ag/AgCl at −78 °C with good rate capability and stable cycling performance, in sharp contrast to the findings in a typical Li2MnO3cell cycled at room temperature, is observed. However, the results reveal that the capacity does not originate from the reversible oxygen oxidation in Li2MnO3but the reversible Cl2(l)/Cl(aq.) redox from the electrolyte. The results demonstrate the good catalytic properties of Li2MnO3to promote the Cl2/Clredox at low temperatures. 
    more » « less
  5. Earth-abundant, cost-effective electrode materials are essential for sustainable rechargeable batteries and global decarbonization. Manganese dioxide (MnO2) and hard carbon both exhibit high structural and chemical tunability, making them excellent electrode candidates for batteries. Herein, we elucidate the impact of electrolytes on the cycling performance of commercial electrolytic manganese dioxide in Li chemistry. We leverage synchrotron X-ray analysis to discern the chemical state and local structural characteristics of Mn during cycling, as well as to quantify the Mn deposition on the counter electrode. By using an ether-based electrolyte instead of conventional carbonate electrolytes, we circumvent the formation of a surface Mn(II)-layer and Mn dissolution from LixMnO2. Consequently, we achieved an impressive ∼100% capacity retention for MnO2after 300 cycles at C/3. To create a lithium metal-lean full cell, we introduce hard carbon as the anode which is compatible with ether-based electrolytes. Commercial hard carbon delivers a specific capacity of ∼230 mAh g−1at 0.1 A g−1without plateau, indicating a surface-adsorption mechanism. The resulting manganese dioxide||hard carbon full cell exhibits stable cycling and high Coulombic efficiency. Our research provides a promising solution to develop cost-effective, scalable, and safe energy storage solutions using widely available manganese oxide and hard carbon materials. 
    more » « less