skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Reaction Acceleration at Solid/Solution Interfaces: Katritzky Reaction Catalyzed by Glass Particles
Abstract The Katritzky reaction in bulk solution at room temperature is accelerated significantly by the surface of a glass container compared to a plastic container. Remarkably, the reaction rate is increased by more than two orders of magnitude upon the addition of glass particles with the rate increasing linearly with increasing amounts of glass. A similar phenomenon is observed when glass particles are added to levitated droplets, where large acceleration factors are seen. Evidence shows that glass acts as a “green” heterogeneous catalyst: it participates as a base in the deprotonation step and is recovered unchanged from the reaction mixture. Reaction acceleration at two separate interfaces is recognized in this study: i) air/solution phase acceleration, as is well known in microdroplets; ii) solid/solution phase, where such acceleration appears to be a new phenomenon.  more » « less
Award ID(s):
1905087
PAR ID:
10237074
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie International Edition
Volume:
60
Issue:
6
ISSN:
1433-7851
Page Range / eLocation ID:
p. 2929-2933
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Accelerated reactions in microdroplets have been reported for a wide range of reactions with some microdroplet reactions occurring over a million times faster than the same reaction in bulk solution. Unique chemistry at the air–water interface has been implicated as a primary factor for accelerated reaction rates, but the role of analyte concentration in evaporating droplets has not been as well studied. Here, theta-glass electrospray emitters and mass spectrometry are used to rapidly mix two solutions on the low to sub-microsecond time scale and produce aqueous nanodrops with different sizes and lifetimes. We demonstrate that for a simple bimolecular reaction where surface chemistry does not appear to play a role, reaction rate acceleration factors are between 10 2 and 10 7 for different initial solution concentrations, and these values do not depend on nanodrop size. A rate acceleration factor of 10 7 is among the highest reported and can be attributed to concentration of analyte molecules, initially far apart in dilute solution, but brought into close proximity in the nanodrop through evaporation of solvent from the nanodrops prior to ion formation. These data indicate that analyte concentration phenomenon is a significant factor in reaction acceleration where droplet volume throughout the experiment is not carefully controlled. 
    more » « less
  2. Abstract To disentangle the factors controlling the rates of accelerated reactions in droplets, we used mass spectrometry to study the Katritzky transamination in levitated Leidenfrost droplets of different yet constant volumes over a range of concentrations while holding concentration constant by adding back the evaporated solvent. The set of concentration and droplet volume data indicates that the reaction rate in the surface region is much higher than that in the interior. These same effects of concentration and volume were also seen in bulk solutions. Three pyrylium reagents with different surface activity showed differences in transamination reactivity. The conclusion is drawn that reactions with surface‐active reactants are subject to greater acceleration, as seen particularly at lower concentrations in systems of higher surface‐to‐volume ratios. These results highlight the key role that air‐solution interfaces play in Katritzky reaction acceleration. They are also consistent with the view that reaction‐increased rate constant is at least in part due to limited solvation of reagents at the interface. 
    more » « less
  3. Abstract The kinetics of organic reactions of different types in microvolumes (droplets, thin films, and sealed tubes) show effects of gas/solution interfacial area, reaction molecularity and solvent polarity. Partial solvation at the gas/solution interface is a major contributor to the 104‐fold reaction acceleration seen in bimolecular but not unimolecular reactions in microdroplets. Reaction acceleration can be used to manipulate selectivity by solvent choice. 
    more » « less
  4. Reactivity trends for molecular solids cannot be explained exclusively through the topochemical phenomenon ( i.e. diffusivity, reaction cavities) or electronic structure of the molecules. As an example of this class, Diels–Alder reactions of small molecules with pentacene thin films are examined to elucidate the importance of surface phenomena to reactivity. Polarization modulation-infrared reflection–absorption spectroscopy (PM-IRRAS) has revealed that vapors from the small molecules condense on the surface, in a non-covalent manner, to form a coating 2–3 molecules thick. The phase of this layer can provide increased surface diffusion (both reactant and product) which rapidly accelerates the reaction rate. Kinetic studies of pentacene thin film reactions demonstrate the importance of this condensed state to trends in reactivity, with layers in a quasi-liquid state showing a rate acceleration of 13–30 times compared to those in a quasi-solid state. Scanning electron microscopy provides further evidence of this phase behavior, while solid-state UV-vis confirms the kinetic results. 
    more » « less
  5. Quininium aspirinate is mechanochemically prepared as a crystalline solid by liquid-assisted grinding, or as an amorphous phase (as determined by X-ray powder diffraction), by neat grinding or neat ball milling. Our previous work demonstrated using FT-IR spectroscopy that a mechanochemical reaction had occurred in the mechanically treated neat mixtures. Herein is reported that microcrystal electron diffraction (microED) afforded the discovery of two diffracting micron-size particles in the amorphous powder synthesized by manual grinding, among a majority of non-diffracting particles. Remarkably, microED data of one of them led to the known lattice parameters of quininium aspirinate. Furthermore, this so-called ‘X-ray amorphous’ phase quickly recrystallizes upon exposure to vapors of N,N-dimethylformamide, or hexane vapours (at a lower rate); but it remains amorphous for longer than 20 months when stored at ambient conditions in a closed container. The lattice parameters and the degrees of crystallinity of both recrystallized materials are identical within the experimental error. However, slightly more intense and better-resolved X-ray powder diffraction peaks are observed in the material recrystallized from N,N-dimethylformamide vapours than in the analogous phase recovered from hexane. As expected, Williamson–Hall graphs lead to a larger average crystalline domain size for the former solid. These results illustrate the use of microED for the investigation of structural features in amorphous phases, and the generic role of the solvent vapours in promoting their recrystallization. 
    more » « less