skip to main content

Title: The Stars of the HETDEX Survey. I. Radial Velocities and Metal-poor Stars from Low-resolution Stellar Spectra
Authors:
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; « less
Award ID(s):
1813825 1907417
Publication Date:
NSF-PAR ID:
10237169
Journal Name:
The Astrophysical Journal
Volume:
911
Issue:
2
Page Range or eLocation-ID:
108
ISSN:
0004-637X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Galactic center region, including the nuclear disk, has until recently been largely avoided in chemical census studies because of extreme extinction and stellar crowding. Large, near-IR spectroscopic surveys, such as the Apache Point Observatory Galactic Evolution Experiment (APOGEE), allow the measurement of metallicities in the inner region of our Galaxy. Making use of the latest APOGEE data release (DR16), we are able for the first time to study cool Asymptotic Giant branch (AGB) stars and supergiants in this region. The stellar parameters of five known AGB stars and one supergiant star (VR 5-7) show that their location is well above the tip of the red giant branch. We studied metallicities of 157 M giants situated within 150 pc of the Galactic center from observations obtained by the APOGEE survey with reliable stellar parameters from the APOGEE pipeline making use of the cool star grid down to 3200 K. Distances, interstellar extinction values, and radial velocities were checked to confirm that these stars are indeed situated in the Galactic center region. We detect a clear bimodal structure in the metallicity distribution function, with a dominant metal-rich peak of [Fe/H] ∼ +0.3 dex and a metal-poor peak around {Fe/H] = −0.5more »dex, which is 0.2 dex poorer than Baade’s Window. The α -elements Mg, Si, Ca, and O show a similar trend to the Galactic bulge. The metal-poor component is enhanced in the α -elements, suggesting that this population could be associated with the classical bulge and a fast formation scenario. We find a clear signature of a rotating nuclear stellar disk and a significant fraction of high-velocity stars with v gal  >  300 km s −1 ; the metal-rich stars show a much higher rotation velocity (∼200 km s −1 ) with respect to the metal-poor stars (∼140 km s −1 ). The chemical abundances as well as the metallicity distribution function suggest that the nuclear stellar disk and the nuclear star cluster show distinct chemical signatures and might be formed differently.« less
  2. ABSTRACT We characterize an all-sky catalogue of ∼8400 δ Scuti variables in ASAS-SN, which includes ∼3300 new discoveries. Using distances from Gaia DR2, we derive period–luminosity relationships for both the fundamental mode and overtone pulsators in the WJK, V, Gaia DR2 G, J, H, Ks, and W1 bands. We find that the overtone pulsators have a dominant overtone mode, with many sources pulsating in the second overtone or higher order modes. The fundamental mode pulsators have metallicity-dependent periods, with log10(P) ∼ −1.1 for $\rm [Fe/H]\lt -0.3$ and log10(P) ∼ −0.9 for $\rm [Fe/H]\gt 0$, which leads to a period-dependent scale height. Stars with $P\gt 0.100\, \rm d$ are predominantly located close to the Galactic disc ($\rm |\mathit{ Z}|\lt 0.5\, kpc$). The median period at a scale height of $Z\sim 0\, \rm kpc$ also increases with the Galactocentric radius R, from log10(P) ∼ −0.94 for sources with $R\gt 9\, \rm kpc$ to log10(P) ∼ −0.85 for sources with $R\lt 7\, \rm kpc$, which is indicative of a radial metallicity gradient. To illustrate potential applications of this all-sky catalogue, we obtained 30 min cadence, image subtraction TESS light curves for a sample of 10 fundamental mode and 10 overtone δ Scuti stars discoveredmore »by ASAS-SN. From this sample, we identified two new δ Scuti eclipsing binaries, ASASSN-V J071855.62−434247.3 and ASASSN-V J170344.20−615941.2 with short orbital periods of Porb = 2.6096 and 2.5347 d, respectively.« less
  3. ABSTRACT Some young stellar objects such as T Tauri-like ‘dipper’ stars vary due to transient partial occultation by circumstellar dust, and observations of this phenomenon inform us of conditions in the planet-forming zones close to these stars. Although many dipper stars have been identified with space missions such as Kepler/K2, ground-based telescopes offer longer term and multiwavelength perspectives. We identified 11 dipper stars in the Lupus star-forming region in data from the All-Sky Automated Survey for SuperNovae (ASAS-SN), and further characterized these using observations by the Las Cumbres Global Observatory Telescope (LCOGT) and the Transiting Exoplanet Survey Satellite (TESS), as well as archival data from other missions. Dipper stars were identified from a catalogue of nearby young stars and selected based on the statistical significance, asymmetry, and quasi-periodicity or aperiodicity of variability in their ASAS-SN light curves. All 11 stars lie above or redwards of the zero-age main sequence and have infrared (IR) excesses indicating the presence of full circumstellar discs. We obtain reddening–extinction relations for the variability of seven stars using our combined ASAS-SN-TESS and LCOGT photometry. In all cases, the slopes are below the ISM value, suggesting larger grains, and we find a tentative relation between the slopemore »(grain size) and the $K_\text{s}-[22 \, \mu \text{m}]$ IR colour regarded as a proxy for disc evolutionary state.« less