Abstract 1D materials, such as nanofibers or nanoribbons are considered as the future ultimate limit of downscaling for modern electrical and electrochemical devices. Here, for the first time, nanofibers of a solid solution transition metal trichalcogenide (TMTC), Nb1‐xTaxS3, are successfully synthesized with outstanding electrical, thermal, and electrochemical characteristics rivaling the performance of the‐state‐of‐the art materials for each application. This material shows nearly unchanged sheet resistance (≈740 Ω sq−1) versus bending cycles tested up to 90 cycles, stable sheet resistance in ambient conditions tested up to 60 days, remarkably high electrical breakdown current density of ≈30 MA cm−2, strong evidence of successive charge density wave transitions, and outstanding thermal stability up to ≈800 K. Additionally, this material demonstrates excellent activity and selectivity for CO2conversion to CO reaching ≈350 mA cm−2at −0.8 V versus RHE with a turnover frequency number of 25. It also exhibits an excellent performance in a high‐rate Li–air battery with the specific capacity of 3000 mAh g−1at a current density of 0.3 mA cm−2. This study uncovers the multifunctionality in 1D TMTC alloys for a wide range of applications and opens a new direction for the design of the next generation low‐dimensional materials.
more »
« less
Structural and Kinetic Analyses Reveal the Dual Inhibition Modes of Ornithine Aminotransferase by (1 S ,3 S )-3-Amino-4-(hexafluoropropan-2-ylidenyl)-cyclopentane-1-carboxylic Acid (BCF 3 )
More Like this
-
-
null (Ed.)(Bi 1/2 Na 1/2 )TiO 3 (BNT) based ceramics have been the hot topic for a few years because of their multiple functions, from the piezoelectric properties to more recently the electrostatic energy storage performance. However, some basic issues are still unclear, preventing their wide application in real devices. One of them is the underlying conduction mechanism, the interplay of electronic and ionic carriers as a mixed ionic case and the subsequent quantification. This paper deals with the most basic compositions, which are the typical ones from the (1 − x )(Bi 1/2 Na 1/2 )TiO 3 – x BaTiO 3 (BNT– x BT) phase diagram. The conductivity is primarily investigated by impedance spectroscopy, while different equivalent circuits are applied to different conduction mechanisms. A transition from predominantly ionic to predominantly electronic conduction is revealed to occur with the increase in BaTiO 3 concentration. The mixed ionic–electronic conduction in the composition near the morphotropic phase boundary, namely BNT–7%BT, is identified and then quantified. To verify our interpretation of impedance results, dc degradation is, for the first time, conducted in this family of materials, from which the electronic and ionic conductions can be easily separated by accessing the mean time to failure. The successful combination of the two methods enables us to have an overview of how the oxygen vacancy dynamics in the BNT– x BT system depends upon the phase nature or the domain structure.more » « less