skip to main content


Title: Remote ablation chamber for high efficiency particle transfer in laser ablation electrospray ionization mass spectrometry
Laser ablation electrospray ionization (LAESI) driven by mid-infrared laser pulses allows the direct analysis of biological tissues with minimal sample preparation. Dedicated remote ablation chambers have been developed to eliminate the need for close proximity between the sample and the mass spectrometer inlet. This also allows for the analysis of large or irregularly shaped objects, and incorporation of additional optics for microscopic imaging. Here we report on the characterization of a newly designed conical inner volume ablation chamber working in transmission geometry, where a reduced zone of stagnation was achieved by tapering the sample platform and the chamber outlet. As a result, the transmission efficiency of both large (>7.5 μm) and smaller particulates (<6.5 μm) has increased significantly. Improved analytical figures of merit, including 300 fmol limit of detection, and three orders of magnitude in dynamic range, were established. Particle residence time, measured by the FWHM of the analyte signal, was reduced from 2.0 s to 0.5 s enabling higher ablation rates and shorter analysis time. A total of six glucosinolates (sinigrin, gluconapin, progoitrin, glucoiberin, glucoraphanin, and glucohirsutin) were detected in plant samples with ion abundances higher by a factor of 2 to 8 for the redesigned ablation chamber.  more » « less
Award ID(s):
1734145
NSF-PAR ID:
10237567
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The Analyst
Volume:
145
Issue:
17
ISSN:
0003-2654
Page Range / eLocation ID:
5861 to 5869
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Creation of sub-epithelial voids within scarred vocal folds via ultrafast laser ablation may help in localization of injectable therapeutic biomaterials towards an improved treatment for vocal fold scarring. Several ultrafast laser surgery probes have been developed for precise ablation of surface tissues; however, these probes lack the tight beam focusing required for sub-surface ablation in highly scattering tissues such as vocal folds. Here, we present a miniaturized ultrafast laser surgery probe designed to perform sub-epithelial ablation in vocal folds. The requirement of high numerical aperture for sub-surface ablation, in addition to the small form factor and side-firing architecture required for clinical use, made for a challenging optical design. An Inhibited Coupling guiding Kagome hollow core photonic crystal fiber delivered micro-Joule level ultrashort pulses from a high repetition rate fiber laser towards a custom-built miniaturized objective, producing a 1/e2focal beam radius of 1.12 ± 0.10 μm and covering a 46 × 46 μm2scan area. The probe could deliver up to 3.8 μJ pulses to the tissue surface at 40% transmission efficiency through the entire system, providing significantly higher fluences at the focal plane than were required for sub-epithelial ablation. To assess surgical performance, we performed ablation studies on freshly excised porcine hemi-larynges and found that large area sub-epithelial voids could be created within vocal folds by mechanically translating the probe tip across the tissue surface using external stages. Finally, injection of a model biomaterial into a 1 × 2 mm2void created 114 ± 30 μm beneath the vocal fold epithelium surface indicated improved localization when compared to direct injection into the tissue without a void, suggesting that our probe may be useful for pre-clinical evaluation of injectable therapeutic biomaterials for vocal fold scarring therapy. With future developments, the surgical system presented here may enable treatment of vocal fold scarring in a clinical setting.

     
    more » « less
  2. We present a miniaturized ultrafast laser surgery probe with improved miniaturized optics to deliver higher peak powers and enable higher surgical speeds than previously possible. A custom-built miniaturized CaF2objective showed no evidence of the strong multiphoton absorption observed in our previous ZnS-based probe, enabling higher laser power delivery to the tissue surface for ablation. A Kagome fiber delivered ultrashort pulses from a high repetition rate fiber laser to the objective, producing a focal beam radius of 1.96 μm and covering a 90×90 μm2scan area. The probe delivered the maximum available fiber laser power, providing fluences >6 J/cm2at the tissue surface at 53% transmission efficiency. We characterized the probe’s performance through a parametric ablation study on bovine cortical bone and defined optimal operating parameters for surgery using an experimental- and simulation-based approach. The entire opto-mechanical system, enclosed within a 5-mm diameter housing with a 2.6-mm diameter probe tip, achieved material removal rates >0.1 mm3/min, however removal rates were ultimately limited by the available laser power. Towards a next generation surgery probe, we simulated maximum material removal rates when using a higher power fiber laser and found that removal rates >2 mm3/min could be attained through appropriate selection of laser surgery parameters. With future development, the device presented here can serve as a precise surgical tool with clinically viable speeds for delicate applications such as spinal decompression surgeries.

     
    more » « less
  3. Detrital zircon (DZ) U‐Pb laser ablation‐inductively coupled plasma‐mass spectrometry (LA‐ICP‐MS) has revolutionised the way geologists approach many Earth science questions. Although recent research has focused on rapid sample throughput, acquisition rates are limited to 100–300 analyses h−1. We present a method to acquire zircon U‐Pb dates at rates of 120, 300, 600 and 1200 analyses h−1(30, 12, 6 and 3 s per analysis) by multi‐collector LA‐ICP‐MS. We demonstrate the efficacy of this method by analysing twelve zircon reference materials with dates from ~ 3465 to ~ 28 Ma. Mean offset from high‐precision dates increases with faster rates from 0.9% to 1.1%; mean random 1suncertainty increases from 0.6% to 1.3%. We tested this new method on a sandstone sample previously characterised by large‐nDZ geochronology. Quantitative comparison shows increased correspondence among age distributions comprising > 300 dates. This new method holds promise for DZ geochronology because (a) it requires no major changes to hardware, but rather modifications to software; (b) it yields robust age distributions well‐suited for quantitative analysis and maximum depositional age calculations; (c) there is only a minor sacrifice of accuracy and measurement uncertainty; and (d) there is less burden to researchers in terms of time investment and analytical cost.

     
    more » « less
  4. Throughout the course of an organism’s life, the chemical signatures of environment, food consumption, and weather are recorded into their carbonate structures; these signatures can be directly linked to a time-resolved lifespan. Here we present trace element data from benthic foraminifera and tropical molluscs determined using an ESI NWR193UC excimer laser coupled with an Agilent 8900 triple quadrupole mass spectrometer in the MicroAnalytical Geochemistry and Isotope Characterization (MAGIC) Laboratory at the University of Maine. Benthic foraminifera are protists that live on the sea floor and produce calcite shells, progressively adding chambers. Changes in Mg/Ca in foraminifera are used as a proxy for ocean temperature. Laser ablation ICP-MS data for 18 trace elements were collected in individual growth chambers in foraminifera of the genus Uvigerina from the Bay of Plenty. Line scans were performed within thin (~10 µm) chamber walls using a spot size of 8 µm, beam energy density of 3 J/cm2, repetition rate of 12 Hz, and scan speeds of 2-3 µm/s. Concentrations were determined relative to the NIST610 glass. Ratios of Mg/Ca and other trace elements record the same range of values as those determined via bulk wet chemistry analysis of ~10 foraminifera for a given population, which suggests that LA-ICP-MS may be a viable alternative to wet chemistry. Trace element data were collected across shells of the warm-tropical mollusc species Chione subrugosa from the Ostra Base Camp area, Peru (78°37’22”W, 8°54’46”S). Previous studies of the area have suggested that a large climate transition occurred, transforming a warm water tropical bay into a desert surrounded by a coastal stand with cool waters. This area was occupied by humans at 6250-5450 radiocarbon years BP. This study examines Chione subrugosa, which were found in the living position at the fossilized Ostra Beach and are thought to have been the final living warm-tropical molluscs in the bay. Studies of modern molluscs have revealed that molluscs record massive climatic changes, such as El Niño, in their chemistry. Laser ablation provides a unique opportunity to examine chemical changes directly related to the changing coastal environment. Line scans transverse growth bands along the length of the shell, providing a high resolution record of daily variation in trace element chemistry over the lifespan of the mollusc. Eleven elements were analysed with a beam energy density of 2.4 J/cm2, repetition rate of 15 Hz, spot size of 5 x 25 µm, and a scan speed of 5 µm/s. Preliminary data suggest the preservation of yearly oscillations in trace elements, with high concentrations of La, Ce, U, and Pb during early shell growth. Continued study will examine catastrophic mollusc life events in an effort to link these with environmental climate changes over daily timescales. 
    more » « less
  5. Abstract Acquiring detailed 3D images of samples is needed for conducting thorough investigations in a wide range of applications. Doing so using nondestructive methods such as X-ray computed tomography (X-ray CT) has resolution limitations. Destructive methods, which work based on consecutive delayering and imaging of the sample, face a tradeoff between throughput and resolution. Using focused ion beam (FIB) for delayering, although high precision, is low throughput. On the other hand, mechanical methods that can offer fast delayering, are low precision and may put the sample integrity at risk. Herein, we propose to use femtosecond laser ablation as a delayering method in combination with optical and confocal microscopy as the imaging technique for performing rapid 3D imaging. The use of confocal microscopy provides several advantages. First, it eliminates the 3D image distortion resulting from non-flat layers, caused by the difference in laser ablation rate of different materials. It further allows layer height variations to be maintained within a small range. Finally, it enables material characterization based on the processing of material ablation rate at different locations. The proposed method is applied on a printed circuit board (PCB), and the results are validated and compared with the X-ray CT image of the PCB part. 
    more » « less