skip to main content

Title: Measuring Ex Ante Welfare in Insurance Markets
Abstract The willingness to pay for insurance captures the value of insurance against only the risk that remains when choices are observed. This article develops tools to measure the ex ante expected utility impact of insurance subsidies and mandates when choices are observed after some insurable information is revealed. The approach retains the transparency of using reduced-form willingness to pay and cost curves, but it adds one additional sufficient statistic: the percentage difference in marginal utilities between insured and uninsured. I provide an approach to estimate this additional statistic that uses only the reduced-form willingness to pay curve, combined with a measure of risk aversion. I compare the approach to structural approaches that require fully specifying the choice environment and information sets of individuals. I apply the approach using existing willingness to pay and cost curve estimates from the low-income health insurance exchange in Massachusetts. Ex ante optimal insurance prices are roughly 30% lower than prices that maximize observed market surplus. While mandates reduce market surplus, the results suggest they would actually increase ex ante expected utility.
Authors:
Award ID(s):
1653686
Publication Date:
NSF-PAR ID:
10237587
Journal Name:
The Review of Economic Studies
Volume:
88
Issue:
3
Page Range or eLocation-ID:
1193 to 1223
ISSN:
0034-6527
Sponsoring Org:
National Science Foundation
More Like this
  1. In mechanism design, the firm has an advantage over its customers in its knowledge of the state of the system, which can affect the utilities of all players. This poses the question: how can the firm utilize that information (and not additional financial incentives) to persuade customers to take actions that lead to higher revenue (or other firm utility)? When the firm is constrained to "cheap talk," and cannot credibly commit to a manner of signaling, the firm cannot change customer behavior in a meaningful way. Instead, we allow firm to commit to how they will signal in advance. Customers can then trust the signals they receive and act on their realization. This thesis contains the work of three papers, each of which applies information design to service systems and online markets. We begin by examining how a firm could signal a queue's length to arriving, impatient customers in a service system. We show that the choice of an optimal signaling mechanism can be written as a infinite linear program and then show an intuitive form for its optimal solution. We show that with the optimal fixed price and optimal signaling, a firm can generate the same revenue as itmore »could with an observable queue and length-dependent variable prices. Next, we study demand and inventory signaling in online markets: customers make strategic purchasing decisions, knowing the price will decrease if an item does not sell out. The firm aims to convince customers to buy now at a higher price. We show that the optimal signaling mechanism is public, and sends all customers the same information. Finally, we consider customers whose ex ante utility is not simply their expected ex post utility, but instead a function of its distribution. We bound the number of signals needed for the firm to generate their optimal utility and provide a convex program reduction of the firm's problem.« less
  2. Large fractions of online advertisements are sold via repeated second-price auctions. In these auctions, the reserve price is the main tool for the auctioneer to boost revenues. In this work, we investigate the following question: how can the auctioneer optimize reserve prices by learning from the previous bids while accounting for the long-term incentives and strategic behavior of the bidders? To this end, we consider a seller who repeatedly sells ex ante identical items via a second-price auction. Buyers’ valuations for each item are drawn independently and identically from a distribution F that is unknown to the seller. We find that if the seller attempts to dynamically update a common reserve price based on the bidding history, this creates an incentive for buyers to shade their bids, which can hurt revenue. When there is more than one buyer, incentive compatibility can be restored by using personalized reserve prices, where the personal reserve price for each buyer is set using the historical bids of other buyers. Such a mechanism asymptotically achieves the expected revenue obtained under the static Myerson optimal auction for F. Further, if valuation distributions differ across bidders, the loss relative to the Myerson benchmark is only quadratic inmore »the size of such differences. We extend our results to a contextual setting where the valuations of the buyers depend on observed features of the items. When up-front fees are permitted, we show how the seller can determine such payments based on the bids of others to obtain an approximately incentive-compatible mechanism that extracts nearly all the surplus.« less
  3. Abstract We conduct a comparative welfare analysis of 133 historical policy changes over the past half-century in the United States, focusing on policies in social insurance, education and job training, taxes and cash transfers, and in-kind transfers. For each policy, we use existing causal estimates to calculate the benefit that each policy provides its recipients (measured as their willingness to pay) and the policy’s net cost, inclusive of long-term effects on the government’s budget. We divide the willingness to pay by the net cost to the government to form each policy’s Marginal Value of Public Funds, or its ``MVPF''. Comparing MVPFs across policies provides a unified method of assessing their effect on social welfare. Our results suggest that direct investments in low-income children’s health and education have historically had the highest MVPFs, on average exceeding 5. Many such policies have paid for themselves as the government recouped the cost of their initial expenditures through additional taxes collected and reduced transfers. We find large MVPFs for education and health policies among children of all ages, rather than observing diminishing marginal returns throughout childhood. We find smaller MVPFs for policies targeting adults, generally between 0.5 and 2. Expenditures on adults have exceededmore »this MVPF range in particular if they induced large spillovers on children. We relate our estimates to existing theories of optimal government policy, and we discuss how the MVPF provides lessons for the design of future research.« less
  4. Insurance premiums reflect expectations about the future losses of each insured. Given the dearth of cyber security loss data, market premiums could shed light on the true magnitude of cyber losses despite noise from factors unrelated to losses. To that end, we extract cyber insurance pricing information from the regulatory filings of 26 insurers. We provide empirical observations on how premiums vary by coverage type, amount, and policyholder type and over time. A method using particle swarm optimisation and the expected value premium principle is introduced to iterate through candidate parameterised distributions with the goal of reducing error in predicting observed prices. We then aggregate the inferred loss models across 6,828 observed prices from all 26 insurers to derive the County Fair Cyber Loss Distribution . We demonstrate its value in decision support by applying it to a theoretical retail firm with annual revenue of $50M. The results suggest that the expected cyber liability loss is $428K and that the firm faces a 2.3% chance of experiencing a cyber liability loss between $100K and $10M each year. The method and resulting estimates could help organisations better manage cyber risk, regardless of whether they purchase insurance.
  5. The actuarially fair insurance premium reflects the expected loss for each insured. Given the dearth of cyber security loss data, market premiums could shed light on the true magnitude of cyber losses despite noise from factors unrelated to losses. To that end, we extract cyber insurance pricing information from the regulatory filings of 26 insurers. We provide empirical observations on how premiums vary by coverage type, amount, policyholder type, and over time. A method using Particle Swarm Optimization is introduced to iterate through candidate parameterized distributions with the goal of reducing error in predicting observed prices. We then aggregate the inferred loss models across 6,828 observed prices from all 26 insurers to derive the County Fair Cyber Loss Distribution. We demonstrate its value in decision support by applying it to a theoretical retail firm with annual revenue of $50M. The results suggest that the expected cyber liability loss is $428K, and that the firm faces a 2.3%chance of experiencing a cyber liability loss between $100K and $10M each year. The method could help organizations better manage cyber risk, regardless of whether they purchase insurance.