skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intra- and intermolecular atomic-scale interactions in the receptor binding domain of SARS-CoV-2 spike protein: implication for ACE2 receptor binding
The COVID-19 pandemic poses a severe threat to human health with unprecedented social and economic disruption. Spike (S) glycoprotein in the SARS-CoV-2 virus is pivotal in understanding the virus anatomy, since it initiates the early contact with the ACE2 receptor in the human cell. The subunit S1 in chain A of S-protein has four structural domains: the receptor binding domain (RBD), the n-terminal domain (NTD) and two subdomains (SD1, SD2). We report details of the intra- and inter-molecular binding mechanism of RBD using density functional theory, including electronic structure, interatomic bonding and partial charge distribution. We identify five strong hydrogen bonds and analyze their roles in binding. This provides a pathway to a quantum-chemical understanding of the interaction between the S-protein and the ACE2 receptor with insights into the function of conserved features in the ACE2 receptor binding domain that could inform vaccine and drug development.  more » « less
Award ID(s):
2028803 2032196 2027668
PAR ID:
10237589
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
22
Issue:
33
ISSN:
1463-9076
Page Range / eLocation ID:
18272 to 18283
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract The spike (S) glycoprotein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the binding to the permissive cells. The receptor-binding domain (RBD) of SARS-CoV-2 S protein directly interacts with the human angiotensin-converting enzyme 2 (ACE2) on the host cell membrane. In this study, we used computational saturation mutagenesis approaches, including structure-based energy calculations and sequence-based pathogenicity predictions, to quantify the systemic effects of missense mutations on SARS-CoV-2 S protein structure and function. A total of 18 354 mutations in S protein were analyzed, and we discovered that most of these mutations could destabilize the entire S protein and its RBD. Specifically, residues G431 and S514 in SARS-CoV-2 RBD are important for S protein stability. We analyzed 384 experimentally verified S missense variations and revealed that the dominant pandemic form, D614G, can stabilize the entire S protein. Moreover, many mutations in N-linked glycosylation sites can increase the stability of the S protein. In addition, we investigated 3705 mutations in SARS-CoV-2 RBD and 11 324 mutations in human ACE2 and found that SARS-CoV-2 neighbor residues G496 and F497 and ACE2 residues D355 and Y41 are critical for the RBD–ACE2 interaction. The findings comprehensively provide potential target sites in the development of drugs and vaccines against COVID-19. 
    more » « less
  2. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2), the virus causing COVID‐19, has continued to mutate and spread worldwide despite global vaccination efforts. In particular, the Omicron variant, first identified in South Africa in late November 2021, has become the dominant strain worldwide. Compared to the original strain identified in Wuhan, Omicron features 50 genetic mutations, with 15 mutations in the receptor‐binding domain (RBD) of the spike protein, which binds to the human angiotensin‐converting enzyme 2 (ACE2) receptor for viral entry. However, it is not completely understood how these mutations alter the interaction and binding strength between the Omicron RBD and ACE2. In this study, we used a combined steered molecular dynamics (SMD) simulation and experimental microscale thermophoresis (MST) approach to quantify the interaction between Omicron RBD and ACE2. We report that the Omicron brings an enhanced RBD‐ACE2 interface through N501Y, Q498R, and T478K mutations; the changes further lead to unique interaction patterns, reminiscing the features of previously dominated variants, Alpha (N501Y) and Delta (L452R and T478K). Among the Q493K and Q493R, we report that Q493R shows stronger binding to ACE2 than Q493K due to increased interactions. Our MST data confirmed that the Omicron mutations in RBD are associated with a five‐fold higher binding affinity to ACE2 compared to the RBD of the original strain. In conclusion, our results could help explain the Omicron variant's prevalence in human populations, as higher interaction forces or affinity for ACE2 likely promote greater viral binding and internalization, leading to increased infectivity. 
    more » « less
  3. Abstract The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), sparked an international debate on effective ways to prevent and treat the virus. Specifically, there were many varying opinions on the use of ivermectin (IVM) throughout the world, with minimal research to support either side. IVM is an FDA-approved antiparasitic drug that was discovered in the 1970s and was found to show antiviral activity. The objective of this study is to examine the binding behavior and rates of association and dissociation between SARS-CoV-2 receptor binding domain (RBD), IVM, and their combination using aminopropylsilane (APS) biosensors as surrogates for the hydrophobic interaction between the viral protein and human angiotensin-converting enzyme 2 (ACE2) receptors to determine the potential of IVM as a repurposed drug for SARS-CoV-2 prevention and treatment. The IVM, RBD, and combination binding kinetics were analyzed using biolayer interferometry (BLI) and validated with multiple in silico techniques including protein–ligand docking, molecular dynamics simulation, molecular mechanics-generalized Born surface area (MM-GBSA), and principal component analysis (PCA). Our results suggest that with increasing IVM concentrations the association rate with the hydrophobic biosensor increases with a simultaneous decrease in dissociation. Significant kinetic changes to RBD, when combined with IVM, were found only at a concentration a thousand times the approved dosage with minimal changes found over a 35-min time period. Our study suggests that IVM is not an effective preventative or treatment method at the currently approved dosage. 
    more » « less
  4. The ongoing COVID-19 pandemic continues to infect people worldwide, and the virus continues to evolve in significant ways which can pose challenges to the efficiency of available vaccines and therapeutic drugs and cause future pandemic. Therefore, it is important to investigate the binding and interaction of ACE2 with different RBD variants. A comparative study using all-atom MD simulations was conducted on ACE2 binding with 8 different RBD variants, including N501Y, E484K, P479S, T478I, S477N, N439K, K417N and N501YE484K- K417N on RBD. Based on the RMSD, RMSF, and DSSP results, overall the binding of RBD variants with ACE2 is stable, and the secondary structure of RBD and ACE2 are consistent after the point mutation. Besides that, a similar buried surface area, a consistent binding interface and a similar amount of hydrogen bonds formed between RBD and ACE2 although the exact residue pairs on the binding interface were modified. The change of binding free energy from point mutation was predicted using the free energy perturbation (FEP) method. It is found that N501Y, N439K, and K417N can strengthen the binding of RBD with ACE2, while E484K and P479S weaken the binding, and S477N and T478I have negligible effect on the binding. Point mutations modified the dynamic correlation of residues in RBD based on the dihedral angle covariance matrix calculation. Doing dynamic network analysis, a common intrinsic network community extending from the tail of RBD to central, then to the binding interface region was found, which could communicate the dynamics in the binding interface region to the tail thus to the other sections of S protein. The result can supply unique methodology and molecular insight on studying the molecular structure and dynamics of possible future pandemics and design novel drugs. 
    more » « less
  5. Abstract SARS-CoV-2 receptor binding domains (RBDs) interact with both the ACE2 receptor and heparan sulfate on the surface of host cells to enhance SARS-CoV-2 infection. We show that suramin, a polysulfated synthetic drug, binds to the ACE2 receptor and heparan sulfate binding sites on the RBDs of wild-type, Delta, and Omicron variants. Specifically, heparan sulfate and suramin had enhanced preferential binding for Omicron RBD, and suramin is most potent against the live SARS-CoV-2 Omicron variant (B.1.1.529) when compared to wild type and Delta (B.1.617.2) variants in vitro. These results suggest that inhibition of live virus infection occurs through dual SARS-CoV-2 targets of S-protein binding and previously reported RNA-dependent RNA polymerase inhibition and offers the possibility for this and other polysulfated molecules to be used as potential therapeutic and prophylactic options against COVID-19. 
    more » « less