skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causal Learning with Delays Up to 21 Hours.
Delays between causes and effects are commonly found in cause-effect relationships in real life. However, previous studies have only investigated delays on the order of seconds. In the current study we tested whether people can learn a cause- effect relation with hour long delays. The delays between the cause and effect were either 0, 3, 9, or 21 hours, and the study lasted 16 days. Surprisingly, we found that participants were able to learn the causal relation about equally as well in all four conditions. These findings demonstrate a remarkable ability to accurately learn causal relations in a realistic timeframe that has never been tested before.  more » « less
Award ID(s):
1651330
PAR ID:
10237622
Author(s) / Creator(s):
;
Editor(s):
Fitch, T; Lamm, C; Leder, H; Tessmar, K
Date Published:
Journal Name:
Proceedings of the Annual Conference of the Cognitive Science Society
ISSN:
1069-7977
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Considerable delays between causes and effects are commonly found in real life. However, previous studies have only investigated how well people can learn probabilistic relations with delays on the order of seconds. In the current study we tested whether people can learn a cause-effect relation with delays of 0, 3, 9, or 21hours, and the study lasted 16 days. We found that learning was slowed with longer delays, but by the end of 16 days participants had learned the cause-effect relation in all four conditions, and they had learned the relation about equally well in all four conditions. This suggests that in real-world situations people may still be fairly accurate at inferring cause-effect relations with delays if they have enough experience. We also discuss ways that delays may interact with other real-world factors that could complicate learning. 
    more » « less
  2. Identification of causal direction between a causal-effect pair from observed data has recently attracted much attention. Various methods based on functional causal models have been proposed to solve this problem, by assuming the causal process satisfies some (structural) constraints and showing that the reverse direction violates such constraints. The nonlinear additive noise model has been demonstrated to be effective for this purpose, but the model class is not transitive--even if each direct causal relation follows this model, indirect causal influences, which result from omitted intermediate causal variables and are frequently encountered in practice, do not necessarily follow the model constraints; as a consequence, the nonlinear additive noise model may fail to correctly discover causal direction. In this work, we propose a cascade nonlinear additive noise model to represent such causal influences--each direct causal relation follows the nonlinear additive noise model but we observe only the initial cause and final effect. We further propose a method to estimate the model, including the unmeasured intermediate variables, from data, under the variational auto-encoder framework. Our theoretical results show that with our model, causal direction is identifiable under suitable technical conditions on the data generation process. Simulation results illustrate the power of the proposed method in identifying indirect causal relations across various settings, and experimental results on real data suggest that the proposed model and method greatly extend the applicability of causal discovery based on functional causal models in nonlinear cases. 
    more » « less
  3. null (Ed.)
    While recent experiments provided compelling evidence for an intricate dependence of attosecond photoemission-time delays on the solid’s electronic band structure, the extent to which electronic transport and dispersion in solids can be imaged in time-resolved photoelectron (PE) spectra remains poorly understood. Emphasizing the distinction between photoemission time delays measured with two-photon, two-color interferometric spectroscopy, and transport times, we demonstrate how the effect of energy dispersion in the solid on photoemission delays can, in principle, be observed in interferometric photoemission. We reveal analytically a scaling relation between the PE transport time in the solid and the observable photoemission delay and confirm this relation in numerical simulations for a model system. We trace photoemission delays to the phase difference the PE accumulates inside the solid and, in particular, predict negative photoemission delays. Based on these findings, we suggest a novel time-domain interferometric solid-state energy-momentum-dispersion imaging method. 
    more » « less
  4. This study evaluated ChatGPT’s ability to understand causal language in science papers and news by testing its accuracy in a task of labeling the strength of a claim as causal, conditional causal, correlational, or no relationship. The results show that ChatGPT is still behind the existing fine-tuned BERT models by a large margin. ChatGPT also had difficulty understanding conditional causal claims mitigated by hedges. However, its weakness may be utilized to improve the clarity of human annotation guideline. Chain-of-thought prompting was faithful and helpful for improving prompt performance, but finding the optimal prompt is difficult with inconsistent results and the lack of effective method to establish cause-effect between prompts and outcomes, suggesting caution when generalizing prompt engineering results across tasks or models. 
    more » « less
  5. Abstract There is considerable interest in better understanding how earth processes shape the generation and distribution of life on Earth. This question, at its heart, is one of causation. In this article I propose that at a regional level, earth processes can be thought of as behaving somewhat deterministically and may have an organized effect on the diversification and distribution of species. However, the study of how landscape features shape biology is challenged by pseudocongruent or collinear variables. I demonstrate that causal structures can be used to depict the cause–effect relationships between earth processes and biological patterns using recent examples from the literature about speciation and species richness in montane settings. This application shows that causal diagrams can be used to better decipher the details of causal relationships by motivating new hypotheses. Additionally, the abstraction of this knowledge into structural equation metamodels can be used to formulate theory about relationships within Earth–life systems more broadly. Causal structures are a natural point of collaboration between biologists and Earth scientists, and their use can mitigate against the risk of misassigning causality within studies. My goal is that by applying causal theory through application of causal structures, we can build a systems‐level understanding of what landscape features or earth processes most shape the distribution and diversification of species, what types of organisms are most affected, and why. 
    more » « less