skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Enhancing engineering students' ethical reasoning: Situating reflexive principlism within the SIRA framework
Abstract Background

Educating engineers to reason through the ethical decisions they encounter when developing or implementing new technologies is a critical challenge. However, engineering educators have not widely adopted a framework for preparing engineering students to analyze ethical issues.

Purpose/Hypothesis

We developed and tested an approach for enhancing the ethical reasoning of engineering students. This approach integrates reflexive principlism, an ethical reasoning approach, within a structured learning framework, scaffolded, interactive, and reflective analysis, or SIRA. We hypothesized that students' ethical reasoning abilities and empathic perspective‐taking tendencies would increase.

Design/Method

We implemented and tested the integrated approach over five semesters with graduate‐level engineering students through a quasi‐experimental, controlled research design. We measured changes in ethical reasoning using the Engineering Ethical Reasoning Instrument (EERI) and the Defining Issues Test 2 (DIT2) and empathic tendencies using the Interpersonal Reactivity Index (IRI). We examined relationships among measures through correlation analysis.

Results

The EERI instrumentation indicated that the approach significantly increased the ethical reasoning abilities of graduate‐level engineering students. However, the DIT2 findings did not indicate change. The IRI indicated perspective‐taking tendencies were enhanced and personal distress tendencies were reduced. Postcourse correlational data indicated moderate relationships between perspective‐taking and ethical reasoning as measured by the IRI and the EERI indexes.

Conclusions

This study provides a theoretical approach for developing ethical reasoning and empathic perspective‐taking among graduate‐level engineering students. It also provides a theoretical framework, a pedagogical approach, and evaluation methods that others may utilize.

 
more » « less
NSF-PAR ID:
10237637
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Engineering Education
Volume:
108
Issue:
1
ISSN:
1069-4730
Page Range / eLocation ID:
p. 82-102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The Defining Issues Test 2 (DIT-2) and Engineering Ethical Reasoning Instrument (EERI) are designed to measure ethical reasoning of general (DIT-2) and engineering-student (EERI) populations. These tools—and the DIT-2 especially—have gained wide usage for assessing the ethical reasoning of undergraduate students. This paper reports on a research study in which the ethical reasoning of first-year undergraduate engineering students at multiple universities was assessed with both of these tools. In addition to these two instruments, students were also asked to create personal concept maps of the phrase “ethical decision-making.” It was hypothesized that students whose instrument scores reflected more postconventional levels of moral development and more sophisticated ethical reasoning skills would likewise have richer, more detailed concept maps of ethical decision-making, reflecting their deeper levels of understanding of this topic and the complex of related concepts. In fact, there was no significant correlation between the instrument scores and concept map scoring, suggesting that the way first-year studentsconceptualizeethical decision making does not predict the way they behave whenperformingscenario-based ethical reasoning (perhaps more situated). This disparity indicates a need to more precisely quantify engineering ethical reasoning and decision making, if we wish to inform assessment outcomes using the results of such quantitative analyses.

     
    more » « less
  2. The Defining Issues Test 2 (DIT-2) and Engineering Ethical Reasoning Instrument (EERI) are designed to measure ethical reasoning of general (DIT-2) and engineering-student (EERI) populations. These tools—and the DIT-2 especially—have gained wide usage for assessing the ethical reasoning of undergraduate students. This paper reports on a research study in which the ethical reasoning of first-year undergraduate engineering students at multiple universities was assessed with both of these tools. In addition to these two instruments, students were also asked to create personal concept maps of the phrase “ethical decision-making.” It was hypothesized that students whose instrument scores reflected more postconventional levels of moral development and more sophisticated ethical reasoning skills would likewise have richer, more detailed concept maps of ethical decision-making, reflecting their deeper levels of understanding of this topic and the complex of related concepts. In fact, there was no significant correlation between the instrument scores and concept map scoring, suggesting that the way first-year students conceptualize ethical decision making does not predict the way they behave when performing scenario-based ethical reasoning (perhaps more situated). This disparity indicates a need to more precisely quantify engineering ethical reasoning and decision making, if we wish to inform assessment outcomes using the results of such quantitative analyses. 
    more » « less
  3. Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With active learning strategies becoming a preferred method of instruction, a collaboration of authors from four universities (University of Pittsburgh, University of Connecticut, Rowan University and New Jersey Institute of Technology) are investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. This paper offers an overview and results of the progress to date of this three year, NSF Improving Undergraduate STEM Education (IUSE) grant that aims to (1) characterize the ethical awareness and decision making of first-year engineering students, (2) develop game-based learning interventions focused on ethical decision making, and (3) determine how (and why) game-based approaches affect students’ ethical awareness in engineering and the advantages of such approaches over non game-based approaches. Now in its second year, the authors have conducted a preliminary analysis of first-year students' ethical knowledge and organization via a concept mapping approach and have measured students' ethical reasoning using the Defining Issues Test 2 (DIT2) and Engineering Ethics Reasoning Instrument (EERI). Further, the authors have developed a suite of ethics-driven games that have been implemented across three of the universities, engaging over 400 first-year engineering students. Evaluation data has also been gathered for further game development and to assess initial student engagement and learning. Year 1 has provided insight into where first-year engineering students “are at” in terms of ethical knowledge and reasoning when they come to college, and how game-based instruction can be effective in the development of these students into moral agents who understand the consequences of their decisions. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives. 
    more » « less
  4. This Innovative Practice Full Paper presents a novel, narrative, game-based approach to introducing first-year engineering students to concepts in ethical decision making. Approximately 250 first-year engineering students at the University of Connecticut played through our adventure, titled Mars: An Ethical Expedition, by voting weekly as a class on a presented dilemma. Literature shows that case studies still dominate learning sciences research on engineering ethical education, and that novel, active learning-based techniques, such as games, are infrequently used but can have a positive impact on both student engagement and learning. In this work, we suggest that games are a form of situated (context-based) learning, where the game setting provides learners with an authentic but safe space in which to explore engineering ethical choices and their consequences. As games normalize learning through failure, they present a unique opportunity for students to explore ethical decision making in a non-judgmental, playful, and safe way.We explored the situated nature of ethical decision making through a qualitative deconstruction of the weekly scenarios that students engaged with over the course of the twelve-week narrative. To assess their ethical reasoning, students took the Engineering Ethics Reasoning Instrument (EERI), a quantitative engineering ethics reasoning survey, at the beginning and end of the semester. The EERI scenarios were deconstructed to reveal their core ethical dilemmas, and then common elements between the EERI and our Mars adventure were compared to determine how students responded to similar ethical dilemmas presented in each context.We noted that students' responses to the ethical decisions in the Mars adventure scenarios were sometimes substantially different both from their response to the EERI scenario as well as from other decisions they made within the context of the game, despite the core ethical dilemma being the same. This suggests that they make ethical decisions in some situations that differ from a presumed abstract understanding of post-conventional moral reasoning. This has implications for how ethical reasoning can be taught and scaffolded in educational settings. 
    more » « less
  5. Ethics education has been recognized as increasingly important to engineering over the past two decades, although disagreement exists concerning how ethics can and should be taught in the classroom. With the support from the National Science Foundation (NSF) Improving Undergraduate STEM Education (IUSE) program, a collaboration of investigators from the University of Connecticut, New Jersey Institute of Technology, University of Pittsburgh, and Rowan University are conducting a mixed-methods project investigating how game-based or playful learning with strongly situated components can influence first-year engineering students’ ethical knowledge, awareness, and decision making. We have conducted preliminary analyses of first-year students’ ethical reasoning and knowledge using the Defining Issues Test 2 (DIT-2), Engineering Ethics Reasoning Instrument (EERI), and concept map assessment to characterize where students “are at” when they come to college, the results of which can be found in past ASEE publications. Additionally, we have developed a suite of ethics-driven classroom games that have been implemented and evaluated across three universities, engaging over 400 first-year engineering students. Now in its third year, we are modifying and (re)designing two of the game- based ethics interventions to (1) more accurately align with the ethical dilemmas in the EERI, (2) allow for more flexibility in modality of how the games are distributed to faculty and students, and (3) provide more variety in terms of the contexts of ethical dilemmas as well as types of dilemmas. As part of the continued development of the game-based ethical interventions, we are piloting a new assessment tool specific for playful learning in engineering ethics and aimed at measuring students ethical reasoning and thought process after they have played the game(s). The past year has provided insight into the potential limitations of the existing methods for measuring changes in ethical reasoning in students, as well as compared changes between first year and senior students. The last year has highlighted the situated or contextual nature of much of the ethical decision making that students do and incorporated both qualitative and quantitative methods. Further results from this investigation will provide the engineering education community with a set of impactful and research-based playful learning pedagogy and assessment that will help students confront social and ethical dilemmas in their professional lives. 
    more » « less