skip to main content


Title: Probabilistic Dependency Graphs
We introduce Probabilistic Dependency Graphs (PDGs), a new class of directed graphical models. PDGs can capture inconsistent beliefs in a natural way and are more modular than Bayesian Networks (BNs), in that they make it easier to incorporate new information and restructure the representation. We show by example how PDGs are an especially natural modeling tool. We provide three semantics for PDGs, each of which can be derived from a scoring function (on joint distributions over the variables in the network) that can be viewed as representing a distribution's incompatibility with the PDG. For the PDG corresponding to a BN, this function is uniquely minimized by the distribution the BN represents, showing that PDG semantics extend BN semantics. We show further that factor graphs and their exponential families can also be faithfully represented as PDGs, while there are significant barriers to modeling a PDG with a factor graph.  more » « less
Award ID(s):
1703846
NSF-PAR ID:
10238279
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Utilizing recently introduced concepts from statistics and quantitative risk management, we present a general variant of Batch Normalization (BN) that offers accelerated convergence of Neural Network training compared to conventional BN. In general, we show that mean and standard deviation are not always the most appropriate choice for the centering and scaling procedure within the BN transformation, particularly if ReLU follows the normalization step. We present a Generalized Batch Normalization (GBN) transformation, which can utilize a variety of alternative deviation measures for scaling and statistics for centering, choices which naturally arise from the theory of generalized deviation measures and risk theory in general. When used in conjunction with the ReLU non- linearity, the underlying risk theory suggests natural, arguably optimal choices for the deviation measure and statistic. Utilizing the suggested deviation measure and statistic, we show experimentally that training is accelerated more so than with conventional BN, often with improved error rate as well. Overall, we propose a more flexible BN transformation supported by a complimentary theoretical framework that can potentially guide design choices. 
    more » « less
  2. Modeling directed graphs with differentiable representations is a fundamental requirement for performing machine learning on graph-structured data. Geometric embedding models (e.g. hyperbolic, cone, and box embeddings) excel at this task, exhibiting useful inductive biases for directed graphs. However, modeling directed graphs that both contain cycles and some element of transitivity, two properties common in real-world settings, is challenging. Box embeddings, which can be thought of as representing the graph as an intersection over some learned super-graphs, have a natural inductive bias toward modeling transitivity, but (as we prove) cannot model cycles. To this end, we propose binary code box embeddings, where a learned binary code selects a subset of graphs for intersection. We explore several variants, including global binary codes (amounting to a union over intersections) and per-vertex binary codes (allowing greater flexibility) as well as methods of regularization. Theoretical and empirical results show that the proposed models not only preserve a useful inductive bias of transitivity but also have sufficient representational capacity to model arbitrary graphs, including graphs with cycles. 
    more » « less
  3. Modeling directed graphs with differentiable representations is a fundamental requirement for performing machine learning on graph-structured data. Geometric embedding models (e.g. hyperbolic, cone, and box embeddings) excel at this task, exhibiting useful inductive biases for directed graphs. However, modeling directed graphs that both contain cycles and some element of transitivity, two properties common in real-world settings, is challenging. Box embeddings, which can be thought of as representing the graph as an intersection over some learned super-graphs, have a natural inductive bias toward modeling transitivity, but (as we prove) cannot model cycles. To this end, we propose binary code box embeddings, where a learned binary code selects a subset of graphs for intersection. We explore several variants, including global binary codes (amounting to a union over intersections) and per-vertex binary codes (allowing greater flexibility) as well as methods of regularization. Theoretical and empirical results show that the proposed models not only preserve a useful inductive bias of transitivity but also have sufficient representational capacity to model arbitrary graphs, including graphs with cycles. 
    more » « less
  4. Self-attention is key to the remarkable success of transformers in sequence modeling tasks including many applications in natural language processing and computer vision. Like neural network layers, these attention mechanisms are often developed by heuristics and experience. To provide a principled framework for constructing attention layers in transformers, we show that the self-attention corresponds to the support vector expansion derived from a support vector regression problem, whose primal formulation has the form of a neural network layer. Using our framework, we derive popular attention layers used in practice and propose two new attentions: 1) the Batch Normalized Attention (Attention-BN) derived from the batch normalization layer and 2) the Attention with Scaled Head (Attention-SH) derived from using less training data to fit the SVR model. We empirically demonstrate the advantages of the Attention-BN and Attention-SH in reducing head redundancy, increasing the model's accuracy, and improving the model's efficiency in a variety of practical applications including image and time-series classification. 
    more » « less
  5. Batch Normalization (BN) is essential to effectively train state-of-the-art deep Convolutional Neural Networks (CNN). It normalizes the layer outputs during training using the statistics of each mini-batch. BN accelerates training procedure by allowing to safely utilize large learning rates and alleviates the need for careful initialization of the parameters. In this work, we study BN from the viewpoint of Fisher kernels that arise from generative probability models. We show that assuming samples within a mini-batch are from the same probability density function, then BN is identical to the Fisher vector of a Gaussian distribution. That means batch normalizing transform can be explained in terms of kernels that naturally emerge from the probability density function that models the generative process of the underlying data distribution. Consequently, it promises higher discrimination power for the batch-normalized mini-batch. However, given the rectifying non-linearities employed in CNN architectures, distribution of the layer outputs show an asymmetric characteristic. Therefore, in order for BN to fully benefit from the aforementioned properties, we propose approximating underlying data distribution not with one, but a mixture of Gaussian densities. Deriving Fisher vector for a Gaussian Mixture Model (GMM), reveals that batch normalization can be improved by independently normalizing with respect to the statistics of disentangled sub-populations. We refer to our proposed soft piecewise version of batch normalization as Mixture Normalization (MN). Through extensive set of experiments on CIFAR-10 and CIFAR-100, using both a 5-layers deep CNN and modern Inception-V3 architecture, we show that mixture normalization reduces required number of gradient updates to reach the maximum test accuracy of the batch normalized model by ∼31%-47% across a variety of training scenarios. Replacing even a few BN modules with MN in the 48-layers deep Inception-V3 architecture is sufficient to not only obtain considerable training acceleration but also better final test accuracy. We show that similar observations are valid for 40 and 100-layers deep DenseNet architectures as well. We complement our study by evaluating the application of mixture normalization to the Generative Adversarial Networks (GANs), where "mode collapse" hinders the training process. We solely replace a few batch normalization layers in the generator with our proposed mixture normalization. Our experiments using Deep Convolutional GAN (DCGAN) on CIFAR-10 show that mixture normalized DCGAN not only provides an acceleration of ∼58% but also reaches lower (better) "Fréchet Inception Distance" (FID) of 33.35 compared to 37.56 of its batch normalized counterpart. 
    more » « less