skip to main content


Title: Matrotrophic viviparity constrains microbiome acquisition during gestation in a live‐bearing cockroach, Diploptera punctata
Abstract

The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome‐development‐reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live‐bearing cockroach,Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole‐body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non‐Blattabacteria species are not able to colonize newbornD. punctatauntil melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk‐like secretions, and mother–offspring interactions during pregnancy.

 
more » « less
Award ID(s):
1654417
NSF-PAR ID:
10238420
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
18
ISSN:
2045-7758
Page Range / eLocation ID:
p. 10601-10614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Maternal transmission of microbes occurs across the animal kingdom and is vital for offspring development and long-term health. The mechanisms of this transfer are most well-studied in humans and other mammals but are less well-understood in egg-laying animals, especially those with no parental care. Here, we investigate the transfer of maternal microbes in the oviparous phrynosomatid lizard, Sceloporus virgatus. We compared the microbiota of three maternal tissues—oviduct, cloaca, and intestine—to three offspring sample types: egg contents and eggshells on the day of oviposition, and hatchling intestinal tissue on the day of hatching. We found that maternal identity is an important factor in hatchling microbiome composition, indicating that maternal transmission is occurring. The maternal cloacal and oviductal communities contribute to offspring microbiota in all three sample types, with minimal microbes sourced from maternal intestines. This indicates that the maternal reproductive microbiome is more important for microbial inheritance than the gut microbiome, and the tissue-level variation of the adult S. virgatus microbiota must develop as the hatchling matures. Despite differences between adult and hatchling communities, offspring microbiota were primarily members of the Enterobacteriaceae and Yersiniaceae families (Phylum Proteobacteria), consistent with this and past studies of adult S. virgatus microbiomes.

     
    more » « less
  2. Shortly after birth, mammals are colonized by a multitude of microbes derived from the mother and the environment. Studies in model organisms have demonstrated that the structure and composition of the gut microbiome of offspring steadily mature with increasing diversity during nursing and weaning (Sommer & Bäckhed, 2013). This period of microbiome assembly is critical for young mammals because the gut microbes they acquire will help train their immune system (Lathrop et al., 2011) with potential long‐lasting effects on their health (Cox et al., 2014). In an article in this issue ofMolecular Ecology, Stoffel et al. (2020) investigated the gut microbiota of northern elephant seals (Mirounga angustirostris) during a key developmental window. A month after giving birth, elephant seal mothers stop nursing their pups and return to the sea. As a consequence, their pups go from a diet of milk rich in fat to abruptly enter a post weaning fasting period which lasts for about two months while they remain with the colony. This particular life‐history trait therefore offered the authors a unique and exciting opportunity to evaluate intrinsic factors contributing to gut microbiota development in a wild marine mammal.

     
    more » « less
  3. Hom, Erik F. (Ed.)
    ABSTRACT

    Microbiomes have gained significant attention in ecological research, owing to their diverse interactions and essential roles within different organismal ecosystems. Microorganisms, such as bacteria, archaea, and viruses, have profound impact on host health, influencing digestion, metabolism, immune function, tissue development, and behavior. This study investigates the microbiome diversity and function of Kellet’s whelk (Kelletia kelletii) perivitelline fluid (PVF), which sustains thousands of developingK. kelletiiembryos within a polysaccharide and protein matrix. Our core microbiome analysis reveals a diverse range of bacteria, with theRoseobactergenus being the most abundant. Additionally, genes related to host-microbe interactions, symbiosis, and quorum sensing were detected, indicating a potential symbiotic relationship between the microbiome and Kellet’s whelk embryos. Furthermore, the microbiome exhibits gene expression related to antibiotic biosynthesis, suggesting a defensive role against pathogenic bacteria and potential discovery of novel antibiotics. Overall, this study sheds light on the microbiome’s role in Kellet’s whelk development, emphasizing the significance of host-microbe interactions in vulnerable life history stages. To our knowledge, ours is the first study to use 16S sequencing coupled with RNA sequencing (RNA-seq) to profile the microbiome of an invertebrate PVF.

    IMPORTANCE

    This study provides novel insight to an encapsulated system with strong evidence of symbiosis between the microbial inhabitants and developing host embryos. The Kellet’s whelk perivitelline fluid (PVF) contains microbial organisms of interest that may be providing symbiotic functions and potential antimicrobial properties during this vulnerable life history stage. This study, the first to utilize a comprehensive approach to investigating Kellet’s whelk PVF microbiome, couples 16S rRNA gene long-read sequencing with RNA-seq. This research contributes to and expands our knowledge on the roles of beneficial host-associated microbes.

     
    more » « less
  4. 1. Microbial symbionts play a crucial role in the development, health, and homeostasis of their hosts. However, the eco‐evolutionary conditions shaping these relationships and the evolutionary scale at which host–microbiome interactions may diverge warrant further investigation, especially in non‐model systems. This study examines the impact of reciprocal gut microbiome transplants between two ecologically very similar, sympatric, and syntopic dung beetle sister species.

    2.Onthophagus vaccaandOnthophagus mediuswere specifically used to compare the growth, development, and fitness outcomes of individuals that were either (i) reared in the presence of a microbiome provided by a mother of the same species (“self‐inoculated”), (ii) forced to develop with a microbiome derived from a heterospecific mother (“cross‐inoculated”), or (iii) reared without a maternally transmitted microbiome.

    3. This study found that individuals reared in the absence of a maternally derived gut microbiome incur detrimental changes in survival, as well as in several metrics signalling normative development. Furthermore, such negative effects are only partly rescued through inoculation with a heterologous microbiome.

    4. Collectively, this study's results suggest that inoculation with a species‐specific, maternally transmitted microbiome is critical for normative development, that the significance of maternally derived microbiota for host survival differs across species, and that the phenotypic outcomes resulting from host–microbiome interactions may diverge even between closely related, ecologically similar host species.

     
    more » « less
  5. The immune equilibrium model suggests that exposure to microbes during early life primes immune responses for pathogen exposure later in life. While recent studies using a range of gnotobiotic (germ-free) model organisms offer support for this theory, we currently lack a tractable model system for investigating the influence of the microbiome on immune system development. Here, we used an amphibian species ( Xenopus laevis ) to investigate the importance of the microbiome in larval development and susceptibility to infectious disease later in life. We found that experimental reductions of the microbiome during embryonic and larval stages effectively reduced microbial richness, diversity and altered community composition in tadpoles prior to metamorphosis. In addition, our antimicrobial treatments resulted in few negative effects on larval development, body condition, or survival to metamorphosis. However, contrary to our predictions, our antimicrobial treatments did not alter susceptibility to the lethal fungal pathogen Batrachochytrium dendrobatidis ( Bd ) in the adult life stage. While our treatments to reduce the microbiome during early development did not play a critical role in determining susceptibility to disease caused by Bd in X. laevis , they nevertheless indicate that developing a gnotobiotic amphibian model system may be highly useful for future immunological investigations. This article is part of the theme issue ‘Amphibian immunity: stress, disease and ecoimmunology’. 
    more » « less