skip to main content


Title: Matrotrophic viviparity constrains microbiome acquisition during gestation in a live‐bearing cockroach, Diploptera punctata
Abstract

The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome‐development‐reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live‐bearing cockroach,Diploptera punctata. Females carry embryos in their brood sac, which acts as the functional equivalent of the uterus and placenta. In our study, 16S rRNA sequencing was used to characterize maternal and embryonic microbiomes as well as the development of the whole‐body microbiome across nymphal development. We identified 50 phyla and 121 classes overall and found that mothers and their developing embryos had significantly different microbial communities. Of particular interest is the notable lack of diversity in the embryonic microbiome, which is comprised exclusively of Blattabacteria, indicating microbial transmission of only this symbiont during gestation. Our analysis of postnatal development reveals that significant amounts of non‐Blattabacteria species are not able to colonize newbornD. punctatauntil melanization, after which the microbial community rapidly and dynamically diversifies. While the role of these microbes during development has not been characterized, Blattabacteria must serve a critical role providing specific micronutrients lacking in milk secretions to the embryos during gestation. This research provides insight into the microbiome development, specifically with relation to viviparity, provisioning of milk‐like secretions, and mother–offspring interactions during pregnancy.

 
more » « less
Award ID(s):
1654417
NSF-PAR ID:
10238420
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
9
Issue:
18
ISSN:
2045-7758
Page Range / eLocation ID:
p. 10601-10614
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Background

    The term holobiont is widely accepted to describe animal hosts and their associated microorganisms. The genomes of all that the holobiont encompasses, are termed the hologenome and it has been proposed as a unit of selection in evolution. To demonstrate that natural selection acts on the hologenome, a significant portion of the associated microbial genomes should be transferred between generations. Using the Sydney Rock Oyster (Saccostrea glomerata) as a model, we tested if the microbes of this broadcast spawning species could be passed down to the next generation by conducting single parent crosses and tracking the microbiome from parent to offspring and throughout early larval stages using 16S rRNA gene amplicon sequencing. From each cross, we sampled adult tissues (mantle, gill, stomach, gonad, eggs or sperm), larvae (D-veliger, umbo, eyed pediveliger, and spat), and the surrounding environment (water and algae feed) for microbial community analysis.

    Results

    We found that each larval stage has a distinct microbiome that is partially influenced by their parental microbiome, particularly the maternal egg microbiome. We also demonstrate the presence of core microbes that are consistent across all families, persist throughout early life stages (from eggs to spat), and are not detected in the microbiomes of the surrounding environment. In addition to the core microbiomes that span all life cycle stages, there is also evidence of environmentally acquired microbial communities, with earlier larval stages (D-veliger and umbo), more influenced by seawater microbiomes, and later larval stages (eyed pediveliger and spat) dominated by microbial members that are specific to oysters and not detected in the surrounding environment.

    Conclusion

    Our study characterized the succession of oyster larvae microbiomes from gametes to spat and tracked selected members that persisted across multiple life stages. Overall our findings suggest that both horizontal and vertical transmission routes are possible for the complex microbial communities associated with a broadcast spawning marine invertebrate. We demonstrate that not all members of oyster-associated microbiomes are governed by the same ecological dynamics, which is critical for determining what constitutes a hologenome.

     
    more » « less
  2. Hom, Erik F. (Ed.)
    ABSTRACT <p>Microbiomes have gained significant attention in ecological research, owing to their diverse interactions and essential roles within different organismal ecosystems. Microorganisms, such as bacteria, archaea, and viruses, have profound impact on host health, influencing digestion, metabolism, immune function, tissue development, and behavior. This study investigates the microbiome diversity and function of Kellet’s whelk (<italic>Kelletia kelletii</italic>) perivitelline fluid (PVF), which sustains thousands of developing<italic>K. kelletii</italic>embryos within a polysaccharide and protein matrix. Our core microbiome analysis reveals a diverse range of bacteria, with the<italic>Roseobacter</italic>genus being the most abundant. Additionally, genes related to host-microbe interactions, symbiosis, and quorum sensing were detected, indicating a potential symbiotic relationship between the microbiome and Kellet’s whelk embryos. Furthermore, the microbiome exhibits gene expression related to antibiotic biosynthesis, suggesting a defensive role against pathogenic bacteria and potential discovery of novel antibiotics. Overall, this study sheds light on the microbiome’s role in Kellet’s whelk development, emphasizing the significance of host-microbe interactions in vulnerable life history stages. To our knowledge, ours is the first study to use 16S sequencing coupled with RNA sequencing (RNA-seq) to profile the microbiome of an invertebrate PVF.</p><sec><title>IMPORTANCE

    This study provides novel insight to an encapsulated system with strong evidence of symbiosis between the microbial inhabitants and developing host embryos. The Kellet’s whelk perivitelline fluid (PVF) contains microbial organisms of interest that may be providing symbiotic functions and potential antimicrobial properties during this vulnerable life history stage. This study, the first to utilize a comprehensive approach to investigating Kellet’s whelk PVF microbiome, couples 16S rRNA gene long-read sequencing with RNA-seq. This research contributes to and expands our knowledge on the roles of beneficial host-associated microbes.

     
    more » « less
  3. Shortly after birth, mammals are colonized by a multitude of microbes derived from the mother and the environment. Studies in model organisms have demonstrated that the structure and composition of the gut microbiome of offspring steadily mature with increasing diversity during nursing and weaning (Sommer & Bäckhed, 2013). This period of microbiome assembly is critical for young mammals because the gut microbes they acquire will help train their immune system (Lathrop et al., 2011) with potential long‐lasting effects on their health (Cox et al., 2014). In an article in this issue ofMolecular Ecology, Stoffel et al. (2020) investigated the gut microbiota of northern elephant seals (Mirounga angustirostris) during a key developmental window. A month after giving birth, elephant seal mothers stop nursing their pups and return to the sea. As a consequence, their pups go from a diet of milk rich in fat to abruptly enter a post weaning fasting period which lasts for about two months while they remain with the colony. This particular life‐history trait therefore offered the authors a unique and exciting opportunity to evaluate intrinsic factors contributing to gut microbiota development in a wild marine mammal.

     
    more » « less
  4. Abstract

    Maternal transmission of microbes occurs across the animal kingdom and is vital for offspring development and long-term health. The mechanisms of this transfer are most well-studied in humans and other mammals but are less well-understood in egg-laying animals, especially those with no parental care. Here, we investigate the transfer of maternal microbes in the oviparous phrynosomatid lizard, Sceloporus virgatus. We compared the microbiota of three maternal tissues—oviduct, cloaca, and intestine—to three offspring sample types: egg contents and eggshells on the day of oviposition, and hatchling intestinal tissue on the day of hatching. We found that maternal identity is an important factor in hatchling microbiome composition, indicating that maternal transmission is occurring. The maternal cloacal and oviductal communities contribute to offspring microbiota in all three sample types, with minimal microbes sourced from maternal intestines. This indicates that the maternal reproductive microbiome is more important for microbial inheritance than the gut microbiome, and the tissue-level variation of the adult S. virgatus microbiota must develop as the hatchling matures. Despite differences between adult and hatchling communities, offspring microbiota were primarily members of the Enterobacteriaceae and Yersiniaceae families (Phylum Proteobacteria), consistent with this and past studies of adult S. virgatus microbiomes.

     
    more » « less
  5. Abstract Background

    Animals form complex symbiotic associations with their gut microbes, whose evolution is determined by an intricate network of host and environmental factors. In many insects, such asDrosophila melanogaster, the microbiome is flexible, environmentally determined, and less diverse than in mammals. In contrast, mammals maintain complex multispecies consortia that are able to colonize and persist in the gastrointestinal tract. Understanding the evolutionary and ecological dynamics of gut microbes in different hosts is challenging. This requires disentangling the ecological factors of selection, determining the timescales over which evolution occurs, and elucidating the architecture of such evolutionary patterns.

    Results

    We employ experimental evolution to track the pace of the evolution of a common gut commensal,Lactiplantibacillus plantarum, within invertebrate (Drosophila melanogaster) and vertebrate (Mus musculus) hosts and their respective diets. We show that inDrosophila, the nutritional environment dictates microbial evolution, while the host benefitsL. plantarumgrowth only over short ecological timescales. By contrast, in a mammalian animal model,L. plantarumevolution results to be divergent between the host intestine and its diet, both phenotypically (i.e., host-evolved populations show higher adaptation to the host intestinal environment) and genomically. Here, both the emergence of hypermutators and the high persistence of mutated genes within the host’s environment strongly differed from the low variation observed in the host’s nutritional environment alone.

    Conclusions

    Our results demonstrate thatL. plantarumevolution diverges between insects and mammals. While the symbiosis betweenDrosophilaandL. plantarumis mainly determined by the host diet, in mammals, the host and its intrinsic factors play a critical role in selection and influence both the phenotypic and genomic evolution of its gut microbes, as well as the outcome of their symbiosis.

     
    more » « less