skip to main content


Title: A Rapid and Facile Purification Method for Glycan‐Binding Proteins and Glycoproteins
Abstract

Glycosylated proteins, namely glycoproteins and proteoglycans (collectively called glycoconjugates), are indispensable in a variety of biological processes. The functions of many glycoconjugates are regulated by their interactions with another group of proteins known as lectins. In order to understand the biological functions of lectins and their glycosylated binding partners, one must obtain these proteins in pure form. The conventional protein purification methods often require long times, elaborate infrastructure, costly reagents, and large sample volumes. To minimize some of these problems, we recently developed and validated a new method termed capture and release (CaRe). This method is time‐saving, precise, inexpensive, and it needs a relatively small sample volume. In this approach, targets (lectins and glycoproteins) are captured in solution by multivalent ligands called target capturing agents (TCAs). The captured targets are then released and separated from their TCAs to obtain purified targets. Application of the CaRe method could play an important role in discovering new lectins and glycoconjugates. © 2020 Wiley Periodicals LLC.

Basic Protocol 1: Preparation of crude extracts containing the target proteins from soybean flour

Alternate Protocol 1: Preparation of crude extracts from Jack bean meal

Alternate Protocol 2: Preparation of crude extracts from the corms ofColocasia esculenta,Xanthosoma sagittifolium, and from the bulbs ofAllium sativum

Alternate Protocol 3: Preparation ofEscherichia colicell lysates containing human galectin‐3

Alternate Protocol 4: Preparation of crude extracts from chicken egg whites (source of ovalbumin)

Basic Protocol 2: Preparation of 2% (v/v) red blood cell suspension

Basic Protocol 3: Detection of lectin activity of the crude extracts

Basic Protocol 4: Identification of multivalent inhibitors as target capturing agents by hemagglutination inhibition assays

Basic Protocol 5: Testing the capturing abilities of target capturing agents by precipitation/turbidity assays

Basic Protocol 6: Capturing of targets (lectins and glycoproteins) in the crude extracts by target capturing agents and separation of the target‐TCA complex from other components of the crude extracts

Basic Protocol 7: Releasing the captured targets (lectins and glycoproteins) by dissolving the complex

Basic Protocol 8: Separation of the targets (lectins and glycoproteins) from their respective target capturing agents

Basic Protocol 9: Verification of the purity of the isolated targets (lectins or glycoproteins)

 
more » « less
PAR ID:
10238502
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Current Protocols in Protein Science
Volume:
101
Issue:
1
ISSN:
1934-3655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Metabolomic studies allow a deeper understanding of the processes of a given ecological community than nucleic acid–based surveys alone. In the case of the gut microbiota, a metabolic profile of, for example, a fecal sample provides details about the function and interactions within the distal region of the gastrointestinal tract, and such a profile can be generated in a number of different ways. This unit elaborates on the use of 1D1H NMR spectroscopy as a commonly used method to characterize small‐molecule metabolites of the fecal metabonome (meta‐metabolome). We describe a set of protocols for the preparation of fecal water extraction, storage, scanning, measurement of pH, and spectral processing and analysis. We also compare the effects of various sample storage conditions for processed and unprocessed samples to provide a framework for comprehensive analysis of small molecules from stool‐derived samples. © 2020 Wiley Periodicals LLC

    Basic Protocol 1: Extracting fecal water from crude fecal samples

    Alternate Protocol 1: Extracting fecal water from small crude fecal samples

    Basic Protocol 2: Acquiring NMR spectra of metabolite samples

    Alternate Protocol 2: Acquiring NMR spectra of metabolite samples using Bruker spectrometer running TopSpin 3.x

    Alternate Protocol 3: Acquiring NMR spectra of metabolite samples by semiautomated process

    Basic Protocol 3: Measuring sample pH

    Support Protocol 1: Cleaning NMR tubes

    Basic Protocol 4: Processing raw spectra data

    Basic Protocol 5: Profiling spectra

    Support Protocol 2: Spectral profiling of sugars and other complex metabolites

     
    more » « less
  2. Abstract

    Protein S‐acylation, predominately in the form of palmitoylation, is a reversible lipid post‐translational modification on cysteines that plays important roles in protein localization, trafficking, activity, and complex assembly. The functions and regulatory mechanisms of S‐acylation have been extensively studied in mammals owing to remarkable development of high‐resolution proteomics and the discovery of the S‐acylation‐related enzymes. However, the advancement of S‐acylation studies in plants lags behind that in mammals, mainly due to the lack of knowledge about proteins responsible for this process, such as protein acyltransferases and their substrates. In this article, a set of systematic protocols to study global S‐acylation inArabidopsisseedlings is described. The procedures are presented in detail, including preparation ofArabidopsisseedlings, enrichment of plasma membrane (PM) proteins, ensuing enrichment of S‐acylated proteins/peptides based on the acyl‐biotin exchange method, and large‐scale identification of S‐acylated proteins/peptides via mass spectrometry. This approach enables researchers to study S‐acylation of PM proteins in plants in a systematic and straightforward way. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Preparation ofArabidopsisseedling materials

    Basic Protocol 2: Isolation and enrichment of plasma membrane proteins

    Support Protocol 1: Determination of protein concentration using BCA assay

    Basic Protocol 3: Enrichment of S‐acylated proteins by acyl‐biotin exchange method

    Support Protocol 2: Protein precipitation by methanol/chloroform method

    Basic Protocol 4: Trypsin digestion and proteomic analysis

    Alternate Protocol: Pre‐resin digestion and peptide‐level enrichment

     
    more » « less
  3. Abstract

    Vibrio parahaemolyticusis a Gram‐negative, halophilic bacterium and opportunistic pathogen of humans and shrimp. Investigating the mechanisms ofV. parahaemolyticusinfection and the multifarious virulence factors it employs requires procedures for bacterial culture, genetic manipulation, and analysis of virulence phenotypes. Detailed protocols for growth assessment, generation of mutants, and phenotype assessment are included in this article. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Assessment of growth ofV. parahaemolyticus

    Alternate Protocol 1: Assessment of growth ofV. parahaemolyticususing a plate reader

    Basic Protocol 2: Swimming/swarming motility assay

    Basic Protocol 3: Genetic manipulation

    Alternate Protocol 2: Natural transformation

    Basic Protocol 4: Secretion assay and sample preparation for mass spectrometry analysis

    Basic Protocol 5: Invasion assay (gentamicin protection assay)

    Basic Protocol 6: Immunofluorescence detection of intracellularV. parahaemolyticus

    Basic Protocol 7: Cytotoxicity assay for T3SS2

     
    more » « less
  4. Abstract

    The reversible oxidation of protein tyrosine phosphatases (PTPs) impairs their ability to dephosphorylate substrates in vivo. This transient inactivation of PTPs occurs as their conserved catalytic cysteine residue reacts with cellular oxidants thereby abolishing the ability of this reactive cysteine to attack the phosphate of the target substrate. Hence, in vivo, the inhibition of specific PTPs in response to regulated and localized rises in cellular oxidants enables phospho‐dependent signaling. We present assays that measure the endogenous activity of specific PTPs that become transiently inactivated in cells exposed to growth factors. Here, we describe the methods and highlight the pitfalls to avoid post‐lysis oxidation of PTPs in order to assess the inactivation and the reactivation of PTPs targeted by cellular oxidants in signal transduction. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Cell transfection (optional)

    Support Protocol: Preparation of degassed lysis buffers

    Basic Protocol 2: Cellular extraction in anaerobic conditions

    Basic Protocol 3: Enrichment and activity assay of specific PTPs

    Alternate Protocol: Measurement of active PTPs via direct cysteinyl labeling

     
    more » « less
  5. Abstract

    Fungi infect over a billion people worldwide and contribute substantially to human morbidity and mortality despite all available therapies. New antifungal drugs are urgently needed. Decades of study have revealed numerous protein targets of potential therapeutic interest for which potent, fungal‐selective ligands remain to be discovered and developed. To measure the binding of diverse small molecule ligands to their larger protein targets, fluorescence polarization (FP) can provide a robust, inexpensive approach. The protocols in this article provide detailed guidance for developing FP‐based assays capable of measuring binding affinity in whole cell lysates without the need for purification of the target protein. Applications include screening of libraries to identify novel ligands and the definition of structure‐activity relationships to aid development of compounds with improved target affinity and fungal selectivity. © 2021 Wiley Periodicals LLC.

    This article was corrected on 18 July 2022. See the end of the full text for details.

    Basic Protocol 1: Use of saturation binding curves to optimize tracer and lysate protein concentrations

    Basic Protocol 2: Establishment of competition binding experiments

    Support Protocol 1: Preparation of fungal cell lysates

    Support Protocol 2: Preparation of human HepG2 cell lysate

     
    more » « less