skip to main content


Title: A Rapid and Facile Purification Method for Glycan‐Binding Proteins and Glycoproteins
Abstract

Glycosylated proteins, namely glycoproteins and proteoglycans (collectively called glycoconjugates), are indispensable in a variety of biological processes. The functions of many glycoconjugates are regulated by their interactions with another group of proteins known as lectins. In order to understand the biological functions of lectins and their glycosylated binding partners, one must obtain these proteins in pure form. The conventional protein purification methods often require long times, elaborate infrastructure, costly reagents, and large sample volumes. To minimize some of these problems, we recently developed and validated a new method termed capture and release (CaRe). This method is time‐saving, precise, inexpensive, and it needs a relatively small sample volume. In this approach, targets (lectins and glycoproteins) are captured in solution by multivalent ligands called target capturing agents (TCAs). The captured targets are then released and separated from their TCAs to obtain purified targets. Application of the CaRe method could play an important role in discovering new lectins and glycoconjugates. © 2020 Wiley Periodicals LLC.

Basic Protocol 1: Preparation of crude extracts containing the target proteins from soybean flour

Alternate Protocol 1: Preparation of crude extracts from Jack bean meal

Alternate Protocol 2: Preparation of crude extracts from the corms ofColocasia esculenta,Xanthosoma sagittifolium, and from the bulbs ofAllium sativum

Alternate Protocol 3: Preparation ofEscherichia colicell lysates containing human galectin‐3

Alternate Protocol 4: Preparation of crude extracts from chicken egg whites (source of ovalbumin)

Basic Protocol 2: Preparation of 2% (v/v) red blood cell suspension

Basic Protocol 3: Detection of lectin activity of the crude extracts

Basic Protocol 4: Identification of multivalent inhibitors as target capturing agents by hemagglutination inhibition assays

Basic Protocol 5: Testing the capturing abilities of target capturing agents by precipitation/turbidity assays

Basic Protocol 6: Capturing of targets (lectins and glycoproteins) in the crude extracts by target capturing agents and separation of the target‐TCA complex from other components of the crude extracts

Basic Protocol 7: Releasing the captured targets (lectins and glycoproteins) by dissolving the complex

Basic Protocol 8: Separation of the targets (lectins and glycoproteins) from their respective target capturing agents

Basic Protocol 9: Verification of the purity of the isolated targets (lectins or glycoproteins)

 
more » « less
NSF-PAR ID:
10238502
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Current Protocols in Protein Science
Volume:
101
Issue:
1
ISSN:
1934-3655
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Nanobodies (nAbs) are recombinant antigen‐binding variable domain fragments obtained from heavy‐chain‐only immunoglobulins. Among mammals, these are unique to camelids (camels, llamas, alpacas, etc.). Nanobodies are of great use in biomedical research due to their efficient folding and stability under a variety of conditions, as well as their small size. The latter characteristic is particularly important for nAbs used as immunolabeling reagents, since this can improve penetration of cell and tissue samples compared to conventional antibodies, and also reduce the gap distance between signal and target, thereby improving imaging resolution. In addition, their recombinant nature allows for unambiguous definition and permanent archiving in the form of DNA sequence, enhanced distribution in the form of sequences or plasmids, and easy and inexpensive production using well‐established bacterial expression systems, such as the IPTG induction method described here. This article will review the basic workflow and process for developing, screening, and validating novel nAbs against neuronal target proteins. The protocols described make use of the most common nAb development method, wherein an immune repertoire from an immunized llama is screened via phage display technology. Selected nAbs can then be taken through validation assays for use as immunolabels or as intrabodies in neurons. © 2020 Wiley Periodicals LLC.

    This article was corrected on 26 June 2021. See the end of the full text for details.

    Basic Protocol 1: Total RNA isolation from camelid leukocytes

    Basic Protocol 2: First‐strand cDNA synthesis; VHH and VHrepertoire PCR

    Basic Protocol 3: Preparation of the phage display library

    Basic Protocol 4: Panning of the phage display library

    Basic Protocol 5: Small‐scale nAb expression

    Basic Protocol 6: Sequence analysis of selected nAb clones

    Basic Protocol 7: Nanobody validation as immunolabels

    Basic Protocol 8: Generation of nAb‐pEGFP mammalian expression constructs

    Basic Protocol 9: Nanobody validation as intrabodies

    Support Protocol 1: ELISA for llama serum testing, phage titer, and screening of selected clones

    Support Protocol 2: Amplification of helper phage stock

    Support Protocol 3: nAb expression in amber suppressorE. colibacterial strains

     
    more » « less
  2. Abstract

    Metabolomic studies allow a deeper understanding of the processes of a given ecological community than nucleic acid–based surveys alone. In the case of the gut microbiota, a metabolic profile of, for example, a fecal sample provides details about the function and interactions within the distal region of the gastrointestinal tract, and such a profile can be generated in a number of different ways. This unit elaborates on the use of 1D1H NMR spectroscopy as a commonly used method to characterize small‐molecule metabolites of the fecal metabonome (meta‐metabolome). We describe a set of protocols for the preparation of fecal water extraction, storage, scanning, measurement of pH, and spectral processing and analysis. We also compare the effects of various sample storage conditions for processed and unprocessed samples to provide a framework for comprehensive analysis of small molecules from stool‐derived samples. © 2020 Wiley Periodicals LLC

    Basic Protocol 1: Extracting fecal water from crude fecal samples

    Alternate Protocol 1: Extracting fecal water from small crude fecal samples

    Basic Protocol 2: Acquiring NMR spectra of metabolite samples

    Alternate Protocol 2: Acquiring NMR spectra of metabolite samples using Bruker spectrometer running TopSpin 3.x

    Alternate Protocol 3: Acquiring NMR spectra of metabolite samples by semiautomated process

    Basic Protocol 3: Measuring sample pH

    Support Protocol 1: Cleaning NMR tubes

    Basic Protocol 4: Processing raw spectra data

    Basic Protocol 5: Profiling spectra

    Support Protocol 2: Spectral profiling of sugars and other complex metabolites

     
    more » « less
  3. Abstract

    Protein S‐acylation, predominately in the form of palmitoylation, is a reversible lipid post‐translational modification on cysteines that plays important roles in protein localization, trafficking, activity, and complex assembly. The functions and regulatory mechanisms of S‐acylation have been extensively studied in mammals owing to remarkable development of high‐resolution proteomics and the discovery of the S‐acylation‐related enzymes. However, the advancement of S‐acylation studies in plants lags behind that in mammals, mainly due to the lack of knowledge about proteins responsible for this process, such as protein acyltransferases and their substrates. In this article, a set of systematic protocols to study global S‐acylation inArabidopsisseedlings is described. The procedures are presented in detail, including preparation ofArabidopsisseedlings, enrichment of plasma membrane (PM) proteins, ensuing enrichment of S‐acylated proteins/peptides based on the acyl‐biotin exchange method, and large‐scale identification of S‐acylated proteins/peptides via mass spectrometry. This approach enables researchers to study S‐acylation of PM proteins in plants in a systematic and straightforward way. © 2020 Wiley Periodicals LLC.

    Basic Protocol 1: Preparation ofArabidopsisseedling materials

    Basic Protocol 2: Isolation and enrichment of plasma membrane proteins

    Support Protocol 1: Determination of protein concentration using BCA assay

    Basic Protocol 3: Enrichment of S‐acylated proteins by acyl‐biotin exchange method

    Support Protocol 2: Protein precipitation by methanol/chloroform method

    Basic Protocol 4: Trypsin digestion and proteomic analysis

    Alternate Protocol: Pre‐resin digestion and peptide‐level enrichment

     
    more » « less
  4. Abstract

    Visualization of gene products inCaenorhabditis eleganshas provided insights into the molecular and biological functions of many novel genes in their native contexts. Single‐molecule fluorescencein situhybridization (smFISH) and immunofluorescence (IF) enable the visualization of the abundance and localization of mRNAs and proteins, respectively, allowing researchers to ultimately elucidate the localization, dynamics, and functions of the corresponding genes. Whereas both smFISH and immunofluorescence have been foundational techniques in molecular biology, each protocol poses challenges for use in theC. elegansembryo. smFISH protocols suffer from high initial costs and can photobleach rapidly, and immunofluorescence requires technically challenging permeabilization steps and slide preparation. Most importantly, published smFISH and IF protocols have predominantly been mutually exclusive, preventing the exploration of relationships between an mRNA and a relevant protein in the same sample. Here, we describe protocols to perform immunofluorescence and smFISH inC. elegansembryos either in sequence or simultaneously. We also outline the steps to perform smFISH or immunofluorescence alone, including several improvements and optimizations to existing approaches. These protocols feature improved fixation and permeabilization steps to preserve cellular morphology while maintaining probe and antibody accessibility in the embryo, a streamlined, in‐tube approach for antibody staining that negates freeze‐cracking, a validated method to perform the cost‐reducing single molecule inexpensive FISH (smiFISH) adaptation, slide preparation using empirically determined optimal antifade products, and straightforward quantification and data analysis methods. Finally, we discuss tricks and tips to help the reader optimize and troubleshoot individual steps in each protocol. Together, these protocols simplify existing workflows for single‐molecule RNA and protein detection. Moreover, simultaneous, high‐resolution imaging of proteins and RNAs of interest will permit analysis, quantification, and comparison of protein and RNA distributions, furthering our understanding of the relationship between RNAs and their protein products or cellular markers in early development. © 2021 Wiley Periodicals LLC.

    Basic Protocol 1: Sequential immunofluorescence and single‐molecule fluorescencein situhybridization

    Alternate Protocol: Abbreviated protocol for simultaneous immunofluorescence and single‐molecule fluorescencein situhybridization

    Basic Protocol 2: Simplified immunofluorescence inC. elegansembryos

    Basic Protocol 3: Single‐molecule fluorescencein situhybridization or single‐molecule inexpensive fluorescencein situhybridization

     
    more » « less
  5. Abstract

    Antibody detection assays are essential for evaluating immunity of individuals against a given virus, and this has been particularly relevant during the COVID‐19 pandemic. Current serology assays either require a laboratory setting and take >1 hr (i.e., enzyme‐linked immunosorbent assay [ELISA]) or are rapid but only qualitative in nature and cannot accurately track antibody levels over time (i.e., lateral flow assay [LFA]). Therefore, there is a need for development of a rapid and simple but also quantitative assay that can evaluate antibody levels in patients accurately over time. We have developed an assay that uses a split nanoluciferase fused to the spike or nucleocapsid proteins of the SARS‐CoV‐2 virus to enable luminescent‐based detection of spike‐ or nucleocapsid‐binding antibodies in serum, plasma, and whole blood samples. The resulting approach is simple, rapid, and quantitative and is highly amenable to low‐/medium‐throughput scale using plate‐based assays, high‐throughput scale using robotics, and point‐of‐care applications. In this article, we describe how to perform the assay in a laboratory setting using a plate reader or liquid‐handling robotics and in a point‐of‐care setting using a handheld, battery‐powered luminometer. Together, these assays allow antibody detection to be easily performed in multiple settings by simplifying and reducing assay time in a laboratory or clinical environment and by allowing for antibody detection in point‐of‐care, nonlaboratory settings. © 2022 Wiley Periodicals LLC.

    Basic Protocol: SARS‐CoV‐2 antibody detection using the split‐luciferase assay on a medium‐throughput scale with a laboratory luminometer

    Alternate Protocol 1: High‐throughput‐based protocol for SARS‐CoV‐2 antibody detection using a robotic platform

    Alternate Protocol 2: Point‐of‐care‐based protocol for SARS‐CoV‐2 antibody detection using a handheld luminometer

    Support Protocol: Determining positive/negative cutoffs for test samples and standardizing the assay between days

     
    more » « less