skip to main content


Title: Iron–Nickel Alloys for Carbon Dioxide Activation by Chemical Looping Dry Reforming of Methane
Abstract

Chemical looping combustion is a clean combustion technology for fossil or renewable fuels. We have previously shown that the process can also be used to enable CO2activation through reduction to CO with Fe oxygen carriers in so‐called “chemical looping dry reforming” (CLDR). Although Fe shows good reactivity with CO2, its reactivity with methane as a fuel is low. In contrast, Ni is highly reactive for methane conversion but cannot be oxidized with CO2. Here, we demonstrate that Fe–Ni alloys combine the reactivities of each metal synergistically. By combining materials synthesis and characterization with reactive evaluation in multicycle CLDR operation, we demonstrate that relatively low amounts of Ni suffice to activate the carrier for methane conversion and that the presence of Fe enables the reoxidation of Ni with CO2. Moreover, the weak oxidant CO2allows the controlled oxidation of the Fe–Ni alloy, which enables CH4upgrading through syngas (CO+H2) production.

 
more » « less
NSF-PAR ID:
10238525
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Energy Technology
Volume:
4
Issue:
10
ISSN:
2194-4288
Page Range / eLocation ID:
p. 1147-1157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methane‐to‐methanol conversion (MMC) can be facilitated with high methanol selectivities by copper‐exchanged zeolites. There are however two open questions regarding the use of these zeolites to facilitate the MMC process. The first concerns the possibility of operating the three cycles in the stepwise MMC process by these zeolites in an isothermal fashion. The second concerns the possibility of improving the methanol yields by systematic substitution of some copper centers in these active sites with other earth‐abundant transition metals. Quantum‐mechanical computations can be used to compare methane activation by copper oxide species and analogous mixed‐metal systems. To carry out such screening, it is important that we use theoretical methods that are accurate and computationally affordable for describing the properties of the hetero‐metallic catalytic species. We have examined the performance of 47 exchange‐correlation density functionals for predicting the relative spin‐state energies and chemical reactivities of six hetero‐metallic [M‐O‐Cu]2+and [M‐O2‐Cu]2+, (where MCo, Fe, and Ni), species by comparison with coupled cluster theory including iterative single, double excitations as well as perturbative treatment of triple excitations, CCSD(T). We also performed multireference calculations on some of these systems. We considered two types of reactions (hydrogen addition and oxygen addition) that are relevant to MMC. We recommend the use of τ‐HCTH and OLYP to determine the spin‐state energy splittings in the hetero‐metallic motifs. ωB97, ωB97X, ωB97X‐D3, and MN15 performed best for predicting the energies of the hydrogen and oxygen addition reactions. In contrast, local, and semilocal functionals do poorly for chemical reactivity. Using [Fe‐O‐Cu]2+as a test, we see that the nonlocal functionals perform well for the methane CH activation barrier. In contrast, the semilocal functionals perform rather poorly. © 2018 Wiley Periodicals, Inc.

     
    more » « less
  2. Abstract

    Sorption-enhanced steam reforming (SESR) of toluene (SESRT) using catalytic CO2sorbents is a promising route to convert the aromatic tar byproducts formed in lignocellulosic biomass gasification into hydrogen (H2) or H2-rich syngas. Commonly used sorbents such as CaO are effective in capturing CO2initially but are prone to lose their sorption capacity over repeated cycles due to sintering at high temperatures. Herein, we present a demonstration of SESRT using A- and B-site doped Sr1−xA’xFe1−yB’yO3−δ(A’ = Ba, Ca; B’ = Co) perovskites in a chemical looping scheme. We found that surface impregnation of 5–10 mol% Ni on the perovskite was effective in improving toluene conversion. However, upon cycling, the impregnated Ni tends to migrate into the bulk and lose activity. This prompted the adoption of a dual bed configuration using a pre-bed of NiO/γ–Al2O3catalyst upstream of the sorbent. A comparison is made between isothermal operation and a more traditional temperature-swing mode, where for the latter, an average sorption capacity of ∼38% was witnessed over five SESR cycles with H2-rich product syngas evidenced by a ratio of H2: COx> 4.0. XRD analysis of fresh and cycled samples of Sr0.25Ba0.75Fe0.375Co0.625O3-δreveal that this material is an effective phase transition sorbent—capable of cyclically capturing and releasing CO2without irreversible phase changes occurring.

     
    more » « less
  3. Abstract

    Direct nonoxidative methane conversion (DNMC) transforms CH4to higher (C2+) hydrocarbons and H2in a single step, but its utility is challenged by low CH4 equilibrium conversion, carbon deposition (coking), and its endothermic reaction energy requirement. This work reports a heat‐exchanged autothermal H2‐permeable tubular membrane reactor composed of a thin mixed ionic‐electronic conducting SrCe0.7Zr0.2Eu0.1O3–δmembrane supported on a porous SrCe0.8Zr0.2O3–δ tube in which a Fe/SiO2 DNMC catalyst is packed, that concurrently tackles all of these challenges. The H2‐permeation flux drives CH4 conversion. O2from an air simulant (O2/He mixture) sweep outside the membrane reacts with permeated H2 to provide heat for the endothermic DNMC reaction. The energy balance between the endothermic DNMC and exothermic H2 combustion on opposite sides of the membrane is achieved, demonstrating the feasibility for autothermal operation using a simple air sweep gas. Moreover, the back diffusion of O2 from the sweep side to the catalyst side oxidizes any deposited carbon into CO. Thus, for the first time demonstrating all the desired attributes, a heat‐exchanged H2‐permeable membrane reactor capable of achieving single‐step auto‐thermal DNMC catalysis while simultaneously improving CH4conversion and preventing coking is achieved. 

     
    more » « less
  4. Abstract

    The oxidative coupling of methane to higher hydrocarbons offers a promising autothermal approach for direct methane conversion, but its progress has been hindered by yield limitations, high temperature requirements, and performance penalties at practical methane partial pressures (~1 atm). In this study, we report a class of Li2CO3-coated mixed rare earth oxides as highly effective redox catalysts for oxidative coupling of methane under a chemical looping scheme. This catalyst achieves a single-pass C2+yield up to 30.6%, demonstrating stable performance at 700 °C and methane partial pressures up to 1.4 atm. In-situ characterizations and quantum chemistry calculations provide insights into the distinct roles of the mixed oxide core and Li2CO3shell, as well as the interplay between the Pr oxidation state and active peroxide formation upon Li2CO3coating. Furthermore, we establish a generalized correlation between Pr4+content in the mixed lanthanide oxide and hydrocarbons yield, offering a valuable optimization strategy for this class of oxidative coupling of methane redox catalysts.

     
    more » « less
  5. Abstract

    Several ceria‐zirconia supported mono and bi‐metallic transition metal oxide clusters containing Fe, Cu, and Ni are synthesized by dry impregnation. Through XRD, H2‐TPR, NH3‐TPD, pyridine adsorption followed by FTIR spectroscopy and XAS, the well‐dispersed nature of the transition metal oxide clusters is revealed, and the Lewis acidity of the catalysts is assessed. In‐situ FTIR spectroscopy is used to monitor the methane activation on catalyst surfaces. All catalysts activate methane at 250 °C forming methyl, alkyl, and methoxy species on the catalyst surface. By co‐feeding steam and oxygen together with methane, continuous direct oxidation of methane to methanol can be achieved, with the complete oxidation to CO2as the other reaction path. Methoxy species are found to be a key intermediate for methanol production. Lowering the methane conversion improves the methanol selectivity. By extrapolation, it is estimated that methanol selectivity close to unity can be achieved below a threshold of methane conversion at about 0.002 %. The formation of CuO and NiO mixed metal oxides produces stronger Lewis acid sites and yields higher methanol selectivity.

     
    more » « less