skip to main content


Title: Vertical surface water–groundwater exchange processes within a headwater floodplain induced by experimental floods
Abstract

Restoring hydrologic connectivity between channels and floodplains is common practice in stream and river restoration. Floodplain hydrology and hydrogeology impact stream hydraulics, ecology, biogeochemical processing, and pollutant removal, yet rigorous field evaluations of surface water–groundwater exchange within floodplains during overbank floods are rare. We conducted five sets of experimental floods to mimic floodplain reconnection by pumping stream water onto an existing floodplain swale. Floods were conducted throughout the year to capture seasonal variation and each involved two replicate floods on successive days to test the effect of varying antecedent moisture. Water levels and specific conductance were measured in surface water, soil, and groundwater within the floodplain, along with surface flow into and out of the floodplain. Vegetation density varied seasonally and controlled the volume of surface water storage on the floodplain. By contrast, antecedent moisture conditions controlled storage of water in floodplain soils, with drier antecedent moisture conditions leading to increased subsurface storage and slower flood wave propagation across the floodplain surface. The site experienced spatial heterogeneity in vertical connectivity between surface water and groundwater across the floodplain surface, where propagation of hydrostatic pressure, preferential flow, and bulk Darcy flow were all mechanisms that may have occurred during the five floods. Vertical connectivity also increased with time, suggesting higher frequency of floodplain inundation may increase surface water–groundwater exchange across the floodplain surface. Understanding the variability of floodplain impacts on water quality noted in the literature likely requires better accounting for seasonal variations in floodplain vegetation and antecedent moisture as well as heterogeneous exchange flow mechanisms. Copyright © 2016 John Wiley & Sons, Ltd.

 
more » « less
PAR ID:
10238541
Author(s) / Creator(s):
;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hydrological Processes
Volume:
30
Issue:
21
ISSN:
0885-6087
Format(s):
Medium: X Size: p. 3770-3787
Size(s):
p. 3770-3787
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The hyporheic zone is the ecotone between stream and river channel flow and groundwater that can process nutrients and improve water quality. Transient hyporheic zones occur in the riparian zone (bank storage or “lung model” exchange) during channel stage fluctuations. Recent studies show that soil pipes are widespread in stream banks and beneath floodplains, creating highly preferential flow between channel and riparian groundwater such that the traditional Darcy model of flow does not apply. We used MODFLOW with the conduit flow package to model a series of stream bank soil pipes and examined soil pipe density (number per m), length, diameter, height above baseflow water surface, connectivity, and matrix hydraulic conductivity on transient particle flow paths and total hyporheic exchange volume (i.e., bank storage) over the course of a peak flow (e.g., storm) event. We found that adding five soil pipes per meter more than doubled hyporheic volume. Soil pipe length was the most important control; adding one 1.5‐m‐long soil pipe caused a 73.4% increase in hyporheic volume. The effect of increasing soil pipe diameter on hyporheic volume leveled off at ~1 cm, as flow limitation switched from pipe flow to pipe‐matrix exchange. To validate our approach, we used the model to successfully reproduce trends from field studies. Our results highlight the need to consider soil pipes when modeling, monitoring, or managing bank storage, floodplain connectivity, or hyporheic exchange.

     
    more » « less
  2. Abstract

    Stream bank storage effects during floods have received limited attention, despite the significant role of such floods in aquifer water budgets. One reason is the complexity of geometry of the problem, which commonly has been treated numerically. Using a simple model in a domain with moving boundary, a semianalytical solution for bank storage effects is proposed to account for stream stage hydrograph, floodplain slope, and aquifer parameters. The results extend classic solutions by Cooper and Rorabaugh (1963,https://doi.org/10.3133/wsp1536J) for idealized vertical streambanks but applied to realistic floodplain cross sections. The accuracy of the semianalytical solution is verified by a one‐dimensional numerical method and compared to a vertical two‐dimensional variably saturated‐flow numerical model. Comparison indicates that a robust solution is valid for diagnostic analyses of modeling bank storage effects on floodplains. The semianalytical solution is applied to laboratory experiments as well. The results indicate that the present solution provides reasonable estimates of peak timing and head of groundwater flow response in the sloping bank during varying stream stage.

     
    more » « less
  3. Abstract

    Floodplains are essential ecosystems that provide a variety of economic, hydrologic, and ecologic services. Within floodplains, surface water‐groundwater exchange plays an important role in facilitating biogeochemical processes and can have a strong influence on stream hydrology through infiltration or discharge of water. These functions can be difficult to assess due to the heterogeneity of floodplains and monitoring constraints, so numerical models are useful tools to estimate fluxes, especially at large spatial extents. In this study, we use the SWAT+ (Soil and Water Assessment Tool) ecohydrological model to quantify magnitudes and spatiotemporal patterns of floodplain surface water‐groundwater exchange in a mountainous watershed using an updated version of thegwflowmodule that directly calculates floodplain‐aquifer exchange rates during periods of floodplain inundation. Thegwflowmodule is a spatially distributed groundwater modelling subroutine within the SWAT+ code that uses a gridded network and physically based equations to predict groundwater storage, groundwater head, and groundwater fluxes. We used SWAT+ to model the 7516 km2Colorado River headwaters watershed and streamflow data from USGS gages for calibration and testing. Models that included floodplain‐groundwater interactions outperformed those without such interactions and provided valuable information about floodplain exchange rates and volumes. Our analyses on the location of floodplain fluxes in the watershed also show that wider areas of floodplains, “beads” (e.g., like beads on a necklace), exchanged a higher net and per area volume of water, as well as higher rates of exchange, compared to narrower areas, “strings.” Study results show that floodplain channel‐groundwater exchange is a valuable process to include in hydrologic models, and model outputs could inform land conservation practises by indicating priority locations, such as beads, where substantial hydrologic exchange occurs.

     
    more » « less
  4. Abstract

    Hydrologic connectivity controls the lateral exchange of water, solids, and solutes between rivers and floodplains, and is critical to ecosystem function, water treatment, flood attenuation, and geomorphic processes. This connectivity has been well‐studied, typically through the lens of fluvial flooding. In regions prone to heavy rainfall, the timing and magnitude of lateral exchange may be altered by pluvial flooding on the floodplain. We collected measurements of flow depth and velocity in the Trinity River floodplain in coastal Texas (USA) during Tropical Storm Imelda (2019), which produced up to 75 cm of rainfall locally. We developed a two‐dimensional hydrodynamic model at high resolution for a section of the Trinity River floodplain inspired by the compound flooding of Imelda. We then employed Lagrangian particle routing to quantify how residence times and particle velocities changed as flooding shifted from rainfall‐driven to river‐driven. Results show that heavy rainfall initiated lateral exchange before river discharge reached flood levels. The presence of rainwater also reduced floodplain storage, causing river water to be confined to a narrow corridor on the floodplain, while rainwater residence times were increased from the effect of high river flow. Finally, we analyzed the role of floodplain channels in facilitating surface‐water connectivity by varying model resolution in the floodplain. While the resolution of floodplain channels was important locally, it did not affect as much the overall floodplain behavior. This study demonstrates the complexity of floodplain hydrodynamics under conditions of heavy rainfall, with implications for sediment deposition and nutrient removal during floods.

     
    more » « less
  5. Abstract

    Threshold changes in rainfall‐runoff generation commonly represent shifts in runoff mechanisms and hydrologic connectivity controlling water and solute transport and transformation. In watersheds with limited human influence, threshold runoff responses reflect interaction between precipitation event and antecedent soil moisture. Similar analyses are lacking in intensively managed landscapes where installation of subsurface drainage tiles has altered connectivity between the land surface, groundwater, and streams, and where application of fertilizer has created significant stores of subsurface nitrogen. In this study, we identify threshold patterns of tile‐runoff generation for a drained agricultural field in Illinois and evaluate how antecedent conditions—including shallow soil moisture, groundwater table depth, and the presence or absence of crops—control tile response. We relate tile‐runoff thresholds to patterns of event nitrate load observed across multiple storm events and evaluate how antecedent conditions control within‐event nitrate concentration‐discharge relationships. Our results demonstrate that an event tile‐runoff threshold emerges relative to the sum of gross precipitation and indices of antecedent shallow soil moisture and antecedent below‐tile groundwater moisture deficit, indicating that both shallow soil and below‐tile storages must be filled to generate significant runoff. In turn, event nitrate load shows a linear dependence on runoff for most time periods, suggesting that subsurface nitrate export and storage can be estimated using runoff threshold relationships and long‐term average nitrate concentrations. Finally, within‐event nitrate concentration‐discharge relationships are controlled by event size and the antecedent tile flow state because these factors dictate the sequence of flow path activation and tile connectivity over a storm event.

     
    more » « less