Structure and thermodynamics of pure cubic ZrO2and HfO2were studied computationally and experimentally from their tetragonal to cubic transition temperatures (2311 and 2530 °C) to their melting points (2710 and 2800 °C). Computations were performed using automated
The enantiomers of eight axially chiral biaryls were separated by chiral HPLC. On‐column enantiomerization of 1‐(
- NSF-PAR ID:
- 10238830
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Israel Journal of Chemistry
- Volume:
- 56
- Issue:
- 11-12
- ISSN:
- 0021-2148
- Format(s):
- Medium: X Size: p. 1052-1056
- Size(s):
- p. 1052-1056
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ab initio molecular dynamics techniques. High temperature synchrotron X-ray diffraction on laser heated aerodynamically levitated samples provided experimental data on volume change during tetragonal-to-cubic phase transformation (0.55 ± 0.09% for ZrO2and 0.87 ± 0.08% for HfO2), density and thermal expansion. Fusion enthalpies were measured using drop and catch calorimetry on laser heated levitated samples as 55 ± 7 kJ/mol for ZrO2and 61 ± 10 kJ/mol for HfO2, compared with 54 ± 2 and 52 ± 2 kJ/mol from computation. Volumetric thermal expansion for cubic ZrO2and HfO2are similar and reach (4 ± 1)·10−5/K from experiment and (5 ± 1)·10−5/K from computation. An agreement with experiment renders confidence in values obtained exclusively from computation: namely heat capacity of cubic HfO2and ZrO2, volume change on melting, and thermal expansion of the liquid to 3127 °C. Computed oxygen diffusion coefficients indicate that above 2400 °C pure ZrO2is an excellent oxygen conductor, perhaps even better than YSZ. -
Abstract We performed deformation and grain growth experiments on natural olivine aggregates with olivine water contents (COH = 600 ± 300 H/106 Si) similar to upper mantle olivine, at 1000–1200°C and 1,400 ± 100 MPa confining pressure. Our experiments differ from published grain growth studies in that most were (1) conducted on natural olivine cores rather than hot‐pressed aggregates and (2) dynamically recrystallized prior to or during grain growth. We combine our results with similar experiments performed at 1200–1300°C and fit the data to a grain growth relationship, yielding a growth exponent (
p ) of 3.2, activation energy ( ) 620 ± 145 kJ mol−1(570 ± 145 kJ mol−1when accounting for the role of temperature on water content), activation volume (E G ) ~5V G × 10−6 m3mol−1, and rate constant (k 0) 1.8× 103 mp s−1. Our is within uncertainty of that predicted for dislocation creep of wet olivine (E G E* = 480 ± 40 kJ mol−1). Grain size in strain rate‐stepping samples adjusted to the olivine piezometer within 1.3–7.9% strain. The active grain boundary migration processes during deformation and dynamic recrystallization affect the kinetics of postdeformation grain growth, as grain boundary migration driven by strain energy density (ρ GBM) may delay the onset of grain growth driven by interfacial energy (γGBM). We compared our postdeformation grain growth rates with data from previously published hydrostatic annealing experiments on synthetic olivine. At geologic timescales, the growth rates are much slower than predicted by the existing wet olivine grain growth law. -
Abstract The synthesis and structural analysis of a quintuple [6]helicene with a corannulene core is reported. The compound was synthesized from corannulene in three steps including a five‐fold intramolecular direct arylation. X‐ray crystallographic analysis revealed a
C 5‐symmetric propeller‐shaped structure and one‐dimensional alignment in the solid state. The enantiomers of the quintuple [6]helicene were successfully separated by HPLC, and the chirality of the two fractions was identified by CD spectroscopy. A kinetic study yielded a racemization barrier of 34.2 kcal mol−1, which is slightly lower than that of pristine [6]helicene. DFT calculations indicate a rapid bowl‐to‐bowl inversion of the corannulene moiety and a step‐by‐step chiral inversion pathway for the five [6]helicene moieties. -
Abstract Recently, slow molecular dynamics of poly(
l ‐lactic acid) (PLLA) by using 1D and 2D exchange NMR are investigated. In this work, slow molecular dynamics of PLLA chains in the α′, a stereocomplex (SC) with poly(d ‐lactic acid), and glassy states are investigated in terms of centerband‐only detection of exchange (CODEX) NMR. The mixing‐time dependence of the CODEX data demonstrates that the molecular dynamics of stems become slower in the order of α′, α, and SC. The temperature dependence of the correlation time 〈τc〉 of the helical jump motions in the α and SC phases simply exhibits Arrhenius behaviors, with activation energy,E a, values of 91 ± 1 and 97 ± 1 kJ mol−1, respectively. In contrast, the temperature dependence of 〈τc〉 in the α′ sample exhibits two Arrhenius lines with substantially differentE avalues of 273 ± 12 and 16 ± 14 kJ mol−1at temperatures below and above 84 °C. The obtained kinetics of molecular dynamics not only establish the relationship between packing structure and dynamics in PLLA polymorphs and in the SC, but also allow for an understanding of the coupled dynamics between the crystalline and amorphous regions at approximatelyT g. -
Abstract Producing hydrochar from landfill municipal solid wastes (MSW) is a sustainable alternative to existing waste management practices in low‐ and middle‐income countries. In this study, mixed MSW feedstock (sent for landfilling) was subjected to hydrothermal carbonization to produce hydrochars. The hydrochar showing the highest heating value was subjected to pyrolysis at 5, 10, and 20 K min−1heating rates. Based on the pyrolysis characteristics, a three pseudo‐component‐based distributed activation energy model was employed to describe the pyrolysis kinetics. The activation energy distributions for the three pseudo‐components were 140 ± 8.7 kJ mol−1, 190 ± 1 kJ mol−1and 175.9 ± 24.9 kJ mol−1, which were able to predict the pyrolysis profile at all heating rates with
R 2 > 0.999. Differential thermogravimetric profiles of the hydrochar revealed its pyrolytic reactivity to resemble lignocellulosic constituents. Fourier‐transform infrared analysis of the hydrochar showed retention of oxygen‐containing functional groups (associated with lignocellulosic constituents) from the parent feedstock. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.